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1 Management Summary
Virtual machines allow an effective and efficient use of hardware by reducing the number of idle hardware, 
migration of environments to different systems and in general a better flexibility in utilizing hardware. Users 
and administrators can choose among many different virtual machine monitor (VMM) implementations. All of 
these VMMs support the basic concept of virtualizing a physical computer to allow concurrent execution of 
multiple operating systems. By using hardware support for virtualization, almost all VMMs allow different 
operating systems to be supported in their guest virtual machines, including Red Hat Enterprise Linux and 
other Linux distributions, Microsoft Windows, different BSD variants, and others.
To support users and administrators in selecting which VMM implementation is most suitable for their needs, 
the analysis compares the security-relevant functionality of Red Hat's KVM with other VMM implementations 
based on attack vectors and usage scenarios. The analysis explains how the different VMM implementations 
mitigate potential attacks and support different usage scenarios.

This document is a management summary providing the conclusions of the complete assessment. The 
assessment report provides details and explanations for the determinations given in with this summary.

Analyzed Virtual Machine Monitors

Many virtual machine monitors (VMMs) with different characteristics are available. The following set of VMMs 
is subject to the analysis and comparison of security aspects:

• KVM provided with RHEL 5.4 using the RHEV Manager

• Xen version 3.4

• VMWare ESX Server version 4

General Security Issues

To identify the security-relevant properties of a VMM that can be used for comparing different 
implementations, the nature of the threats needs to be examined more closely. When a threat becomes real, 
an attacker uses services of the VMM to execute the threat. This implies that the attacker uses an interface 
provided by the VMM to the external world. The attack potential rises with the complexity and size of the 
attack surface of the services offered by the VMM to the external entities. This issue relates to the size of the 
software stack forming the VMM.

Security 
concerns

KVM Xen VMWare ESX

Size of 
software stack

Medium Medium to High N/A*

Based on available 
information: Medium to High

Number of 
interfaces

Medium High N/A*

Based on available 
information: High

Assurance of 
Development 
environment

Linux kernel: High

QEMU: Medium

Medium N/A*

Based on information from 
CC evaluation: medium

Table 1: Comparison results considering security concerns

* Due to the proprietary nature of VMWare ESX Server, reliable and complete information are not considered 
to be available to conclude the assessment of the respective of security concerns. However, hints and partial 
information are presented and discussed below.

Please note that the metric defined in the assessment report for the given table does not have hard to 
measure properties, the results given in the table and explained in the assessment are not the sole truth. 
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However, the assessment provides a general idea of how the different VMM implementations relate to each 
other.

Security Comparison Based on Scenarios

To add another aspect to the comparison of the VMMs with respect to security behavior and mechanisms, a 
number of attack and usage scenarios are defined, which are used as a basis for comparison. The 
comparison of security characteristics of the different VMM implementations is based on the attack vectors 
and usage scenarios introduced in the sections below. Each attack vector and usage scenario is analyzed to 
identify the mechanisms provided by each VMM to either counter and mitigate the threat, or to support the 
usage scenario.

The following table summarizes the assurance the examined VMM implementations provide for covering the 
security aspects in case of a security-relevant flaw. The given assertions are relative to each other and do not 
provide any hint of absolute assurance for the respective VMM (as such, a value of “low” might still mean that 
even if a security-relevant flaw is found, it might be very hard to actually exploit it). The assessment assumes 
the most secure configuration possible to mitigate the outlined threats – the sections below outline these 
configurations.

Scenarios KVM Xen VMWare ESX 
Server*

Assurance of protection against VM accessing unassigned 
resources mediated by para-virtualized drivers

Medium1 Low Low

Assurance of protection against VM accessing unassigned 
resources mediated by full virtualization support software

Medium2 Stubdom: Medium
Default: Low

N/A

Assurance of protection against subversion of trusted 
VMM software – subversion of Hypervisor

High3 High Medium

Assurance of protection against Subversion of trusted 
VMM software – subversion of other virtual machines

Medium4 Stubdom: High
Default: Medium

N/A

Assurance of protection against Subversion of trusted 
VMM software – subversion of boot process

High5 Stubdom: High
Default: Medium

N/A

Assurance of protection against one VM causing a DoS of 
other VMs

High Medium Medium

Support for sandboxing usage High Medium Low

VMs belong to different security domains Low6 Medium Low

Table 2: Assessment of coverage of security aspects based on scenarios in relation to each VMM

*The assessment of the VMWare ESX Server is based on knowledge obtained from public information. If 
VMWare ESX Server also includes additional mechanisms relevant to the scenarios described, the 
assessment might be incomplete.

Guest VM access to unassigned resources

For this attack scenario, an attacker is considered to perform access attempts to resources which are not 
assigned to his virtual machine. The attacker originates from within a virtual machine and can be 
characterized to possess the following capabilities:

• An attacker has full access to user and kernel space of one regular general purpose virtual machine.

1 Assessment is “Medium to High” if sVirt is considered due to the fact that the SELinux separation enforcement also 
covers para-virtualized devices provided by the QEMU logic to the guest system. However, in newer 
implementations of KVM, para-virtualized devices may be provided by the Linux host system, limiting the effect of 
SELinux in this area.

2 Assessment is “High” if sVirt is considered.
3 Assessment is “High” if sVirt is considered.
4 Assessment is “High” if sVirt is considered.
5 Assessment is “High” if sVirt is considered.
6 Assessment is “High” if sVirt is considered.
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• An attacker has full access to all interfaces offered by the VMM to a virtual machine.

• An attacker tries to access resources that are unassigned to its virtual machine. These resources 
include physical, virtualized, and emulated resources.

Guest VM subversion of trusted VMM software

In order to ensure the proper separation of resources, the entire functionality of the hypervisor must be 
trusted. Any software component part of the hypervisor has full hardware privileges and can access any 
resource of the system, including physical devices, data stored on devices, etc.

If any of the mentioned trusted software components can be altered by the guest software running within a 
virtual machine, the software is considered to be subverted, and trust in this software component, as well as 
trust in the separation capability of the VMM, is undermined.

In addition to the modification of trusted software, an attacker might want to add a completely new software 
component. If the guest software has the ability to place another layer of software between the hypervisor 
and the hardware, the results of the operation of the hypervisor cannot  be fully trusted, as the additional 
software layer can emulate a different environment and behavior of the underlying hardware. Effectively, this 
additional software layer adds another untrusted VMM layer.

Guest VM causes Denial-of-Service for other VMs

In addition to the proper separation of virtual machine resources, the VMM implementation also has to ensure 
that resources shared between the virtual machines are shared such that one virtual machine cannot 
dominate the use of the resource.

Usage of VMM for sandboxing

The first usage scenario covers the application of VMMs for sandboxing. Sandboxing is considered when the 
host or one virtual machine is used for regular day-to-day work. It is irrelevant whether a regular server logic 
is implemented in the one virtual machine or whether the VMM implementation is used on an end-user 
system. In general, only one operating system is hosted on the entire physical machine.

Guest VMs belong to different enterprise security domains

Another usage scenario applied to this analysis is the handling and protection of groups of virtual machines 
based on their assignments to security domains. A security domain in enterprise networks is a group of 
services, information and/or resources that are considered to require an equivalent level of trust when 
accessed.

This user scenario analyzes how the different VMM implementations can handle groups of virtual machines 
that belong to different security domains. This implies that resources belonging to the different groups of 
virtual machines can be categorized and that additional separation of the resources of the virtual machines is 
performed based on these categorizations.

2 Introduction
Users and administrators can choose among many different virtual machine monitor (VMM) implementations. 
All of these VMMs support the basic concept of virtualizing a physical computer to allow concurrent execution 
of multiple operating systems. By using hardware support for virtualization, almost all VMMs allow different 
operating systems to be supported in their guest virtual machines, including Red Hat Enterprise Linux and 
other Linux distributions, Microsoft Windows, different BSD variants, and others.

To support users and administrators in selecting which VMM implementation is most suitable for their needs, 
this analysis compares the security-relevant functionality of KVM with other VMM implementations based on 
attack vectors and usage scenarios. The analysis explains how the different VMM implementations mitigate 
potential attacks and support different usage scenarios. 

Comparison of the security characteristics of different VMMs with those provided by KVM allows the reader to 
identify how the different VMM implementations address security-related concerns.
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The comparison of security functions begins by introducing the analyzed VMMs, including the technical 
aspects that support analysis of the security functionality. As part of the security analysis, the interfaces 
provided by the VMM to either the guest virtual machines or the administrator are enumerated.

Following the introduction of the VMM implementations, the attack vectors and usage scenarios considered 
as a basis for this comparison are outlined. A comparison of security mechanisms based on scenarios 
enables the reader to compare the intended IT environment for his implementation with the environment 
considered for this comparative analysis.

General security concerns that must be addressed by VMM implementations are outlined in chapter 3. 
Chapter 4 gives a presentation of the architecture of the virtual machines and relates the implementations to 
the security concerns identified earlier. The attack and usage scenarios that form the basis for the core 
analysis as well as the analysis are given in chapter 5. The usage scenarios and attack vectors are analyzed 
for each VMM. The assessment explains in detail how each VMM covers the analyzed security concerns. 
Table 4 condenses the analysis into a broad overview. Chapter 6 gives general considerations that have an 
overall impact on the assessment of security mechanisms.

The goal of this analysis is to provide an assessment of current state-of-the art VMM implementations and 
their general functionality. The following topics would also be relevant to the discussion but are explicitly 
excluded to keep the size of the analysis reasonable:

• The analysis focuses on the separation mechanism for the virtual machines. As such, the hypervisor 
and supporting software for mediating access to resources are subject to analysis. Other security-
related mechanisms, such as administration of the virtual machines and VMM, network security that 
might be provided by the VMM, or migration aspects in moving a virtual machine from one host to 
another are relevant, but are not considered here.

• The VMMs under discussion implement different virtualization schemes, including the use of 
processor support that allows the use of another processor state to manage certain resources vital to 
the VMM. A different virtualization schema also might implement complete software emulation of the 
processor instructions by the VMM without the use of special processor support, or it might work on 
an entirely different model. This analysis covers only VMM schemes with processor support enabling 
the VMM to offer only full virtualization to its virtual machines. Para-virtualized drivers may be 
provided to support a more efficient access to resources.

• VMMs implement different services for different CPU architectures. This assessment is limited to the 
x86 architecture, which includes 32-bit and 64-bit Intel-compatible CPUs.

• For the scope of the analysis the implementation of the memory management (either using hardware 
support of the latest x86 CPUs or via shadow page tables) is not considered to be relevant as the 
implementation is assumed to be very similar among the different VMM implementations.

• As of writing of this assessment, I/O virtualization is not yet supported by the x86 CPUs. Therefore, 
the assessment considers VMM implementations which handle I/O virtualization in software.

3 General Security Issues
Before starting the assessment of security aspects of virtual machine monitors, a review of the security 
problems and security concerns facing VMMs is useful.

A broad range of security objectives must be handled by the VMM, such as:

• Virtualizing or emulating hardware to allow general-purpose operating systems to concurrently 
execute on shared hardware without interference

• Preventing communication between virtual machines.

• Preventing a virtual machine from accessing resources that are not configured and assigned to that 
virtual machine.

• Preventing takeover of the Hypervisor, as well as the management facilities of the VMM, by hostile 
virtual machines.
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This list of security objectives could be extended with many more entries. However, such a list of security 
objectives is not a useful basis to perform a security-related assessment of different VMM implementations, 
since all implementations share these objectives and fulfill them.

Mitigation can be achieved with different implementations, architectures, and designs. Considering that 
virtualization has been discussed for more than 40 years (it started when the IBM System/360 mainframe was 
being developed and released in the 1960s), the approach as to how to solve the fundamental security issues 
has been well analyzed. Therefore, the focus of this security-related assessment will not solely rely on 
examination of the design or architecture of the different virtual machine implementations. In addition, the 
following method is used.

To identify the security-relevant properties of a VMM that can be used for comparing different 
implementations, the nature of the threats needs to be examined more closely. When a threat becomes real, 
an attacker uses services of the VMM to execute the threat. This implies that the attacker uses an interface 
provided by the VMM to the external world. The attack potential rises with the complexity and size of the 
attack surface of the services offered by the VMM to the external entities. This issue relates to the size of the 
software stack forming the VMM.

3.1 Size of VMM software stack
Security vulnerabilities depend on the size of the code executing with privileges that is exposed to external 
entities, including virtual machines and network communication mechanisms. The larger the software 
component, the more likely the implementation will have coding errors including security-relevant flaws. This 
is only natural, as software development is a more or less manual process; with increasing size and 
complexity, humans add more and more errors into the code. These security flaws are the focal point of 
attackers. In essence, the likelihood of flaws that can be exploited is proportional to the size of the software 
stack.

In order to assess the size of the VMM software stack with respect to security issues, the software 
components operating with privileges must be identified. Privileged software components are considered to 
be those that:

• manage the assignment of and access to resources to be shared between the virtual machines,

• manage the virtual machine settings, or

• manage VMM functionality (such as updates).

Based on these characteristics, privileged software components can be identified for each VMM 
implementation. After identification of the privileged software components, the size ( number of lines of code), 
as well as the complexity of the code, can be determined. The size and complexity of the code also reflect the 
number of services provided by the VMM.

Software components that do not have the technical ability (i.e., privilege) to interfere with the above listed 
operations are considered to be unprivileged. These software components can be left out of scope for the 
assessment. Unless otherwise noted, references to the VMM software stack throughout the remainder of this 
analysis consider the privileged components only.

The size of the software stack will be explained in the introduction to the architecture of the VMM 
implementations considered in this analysis.

The structure of the development regime also has a major impact on the number of flaws found in an 
implementation. This aspect is considered in section 3.3.

To allow a high-level comparison of the size and code complexity of different implementations, the following 
metric is used:

• Low level of size and complexity: A VMM implementation with a low level of size and complexity 
usually implements only separation of virtual machines, without virtualizing or emulating devices or 
other resources. The hypervisor is usually only a very thin layer without any additional supporting 
software.
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• Medium level of size and complexity: A VMM implementation with a medium level of size and 
complexity usually provides separation of virtual machines and some level of virtualizing or 
emulation. The hypervisor may be larger, but the size of the supporting software that needs to be 
trustworthy is limited.

• High level of size and complexity: A VMM implementation with a high level of size and complexity 
implements separation of virtual machines and provides emulation and/or virtualization with a large 
hypervisor, which in turn is supported by a sizable set of supporting  software that needs to be 
trustworthy.

3.2 External interfaces
The size of the VMM software stack is related to the number of security-relevant flaws (which also has an 
impact on the severity of these flaws), but a flaw is only relevant if it can be exploited. This implies also that if 
there is no interface to the functionality containing the issue, an attacker is blocked from abusing the issue.

Exploitation can only occur by using the interfaces the software provides to other entities, such as virtual 
machines or network connections. If a software stack exports many interfaces to other entities, those entities 
have more avenues to identify and exploit flaws. 

The following types of interfaces are usually exported by a VMM:

• API calls, such as Hypervisor calls.

• Interrupts generated by hardware and processed by the VMM – note that some information to be 
processed with an interrupt may be set by a guest operating system.

• Processor instructions including parameters that need to be processed by the VMM.

• The mediation by the VMM of any traffic and information between resources (such as network 
interfaces or disks) and the guest system exposes interfaces offered by the VMM to external entities.

• Traps that are reflected to the VMM by the processor.

There is also a potential for exploiting side effects. An attacker might use an interface that has no relationship 
to the functionality that implements the security-relevant flaw. However, actions mediated through the 
interface might have an impact on the functionality containing the flaw. In this way, the issue might still be 
exploited. Such indirect attempts to breach security are not considered here, as they are notoriously hard to 
assess. Also, such issues form only a tiny fraction of the overall number of security concerns.

In essence, the likelihood of accessing flaws is proportional to the size and number of interfaces provided by 
privileged code to other entities.

To allow a high-level comparison of the size and number of interfaces in different implementations, the 
following metric is used:

• Low number and size of interfaces: A VMM implementation that is considered to have a low number 
and size of interfaces usually only handles a few exceptions raised by the hardware due to guest 
code actions. Hardly any additional interfaces are provided to external entities.

• Medium number and size of interfaces: A VMM implementation with a medium number and size of 
interfaces usually handles a number of exceptions raised by the hardware due to guest code actions, 
and provides a limited set of additional interfaces to virtualizing or emulation support.

• High number and size of interfaces: A VMM implementation that is considered to have a high number 
and size of interfaces handles a large number of exceptions raised by the hardware due to guest 
code actions, provides a large set of additional interfaces to virtualizing or emulation support, and 
might even grant access to its management components to external entities.

3.3 Development environment
Of course, there are also other aspects that have an impact on the number of flaws in a software stack, such 
as the development process. Appropriate processes for code development as well as code review, including 
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third party reviews, support the assurance of the proper implementation of a VMM. The application of 
automated code analysis tools supports the hunt for flaws during the development phase.

Also, the duration between the discovery of a flaw and the release of a fix has an impact on the security-
relevance of a flaw. The faster a fix is provided, the smaller the time window for an attacker to mount a 
successful attack of the flaw.

Another aspect that might have an impact on the number of flaws is code maturity; that is, how long has the 
development organization been developing the code and how often has the code been subject to code review 
and analysis by external experts. As development of the analyzed VMM implementations started at about the 
same time, this issue is not further considered.

These development aspects will also be considered in the security analysis in the subsequent chapters.

To allow a high-level comparison of the assurance of code quality, the following metric is used:

• Low assurance: A VMM implementation that is considered to have low code quality assurance is 
developed in an organization that performs little or no peer review of the developed code. In addition, 
there is no established policy to resolve security flaws in a timely manner.

• Medium assurance: A VMM implementation with medium assurance is usually developed with a fair 
level of code review within the development organization, which also has an established policy for 
resolving security-relevant flaws.

• High assurance: A VMM implementation that is considered to have high code quality assurance must 
have been developed within an environment requiring substantial peer review including third party 
reviews, using code analysis tools, and with an established policy in place for resolving security-
relevant flaws.

4 Analyzed Virtual Machine Monitors
Many virtual machine monitors (VMMs) with different characteristics are available. The following set of VMMs 
is subject to the analysis and comparison of security aspects:

• KVM provided with RHEL 5.4 using the RHEV Manager

• Xen version 3.4

• VMWare ESX Server version 4

The VMM implementation of Xen has been chosen as it is another Open Source implementation which is 
often used. In addition, proper design information is available and it implements a VMM architecture which is 
found by other VMM implementations, such as Microsoft's HyperV. VMWare ESX Server has also been 
chosen as it is one of the most widely used VMMs.

The sections that follow introduce the VMMs and explain the technical details relevant to the security 
comparison.

The results of comparison of the three subject VMMs considering the security concerns described in chapter 
3 are summarized in the following table. (These results are derived from the analysis detailed in the sections 
that follow.)
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Security 
concerns

KVM Xen VMWare ESX

Size of 
software stack

Medium Medium to High N/A*

Based on available 
information: Medium to High

Number of 
interfaces

Medium High N/A*

Based on available 
information: High

Assurance of 
Development 
environment

Linux kernel: High

QEMU: Medium

Medium N/A*

Based on information from 
CC evaluation: medium

Table 3: Comparison results considering security concerns

* Due to the proprietary nature of VMWare ESX Server, reliable and complete information are not considered 
to be available to conclude the assessment of the respective of security concerns. However, hints and partial 
information are presented and discussed below.

Please note that the metric defined for the given table does not have hard to measure properties, the results 
given in the table and explained below are not the sole truth. However, the assessment provides a general 
idea of how the different VMM implementations relate to each other.

4.1 KVM

4.1.1 Architecture

KVM is implemented as part of the Linux kernel supported by user space code. It consists of two essential 
components that implement VMM functionality: the KVM Linux kernel module and QEMU for hardware 
emulation. The use of QEMU implies that KVM provides full virtualization to its guests and can, therefore, 
execute unaltered guest operating systems.

The KVM Linux kernel module implements memory management and virtual machine maintenance 
functionality. This kernel extension makes the entire Linux kernel the hypervisor. Virtual machines are treated 
by the Linux kernel as normal applications. The kernel schedules them like applications, and they can be 
handled like applications. As such, the process implementing a virtual machine can be seen in process 
listings and it can be sent regular signals, like SIGTERM.

Figure 1 depicts that from the Linux kernel perspective, the virtual machine is just another process. However, 
the virtual machine process has a special layout. As depicted in figure 1, the process image is split into two 
parts. The first part hosts a regular application logic executing in user mode (the white part of the application 
box in the figure) – this is used to maintain the QEMU I/O virtualization and some other small KVM-related 
software. The second part contains the image of the guest code, usually an operating system (the gray part of 
the application box), which executes in guest mode. This implies that the entire memory used for the guest 
operating system is allocated by the QEMU application. The kernel keeps track of which parts of the 
application belong to the guest operating system and which parts to the regular application.
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When the kernel releases control of the CPU to the virtual machine process, it sets the processor state of the 
CPU to the user state when calling the regular application logic in user mode. However, when returning 
control of the CPU to the guest code, the CPU can be set either to supervisor state or user state, depending 
on the state of the CPU when the Linux kernel initially obtained control.

Figure 1 also illustrates the overall logic flow that connects the Linux kernel with the regular application logic 
and the guest operating system. In essence, this logic flow is an endless loop, which is performed as follows:

1. The regular application logic executing in user mode sets up the virtual machine configuration by 
instructing the kernel to allocate memory for the application, CPU and other resources. The kernel 
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Figure 1: KVM virtual machine handling by the Linux kernel
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sets up these resources and assigns them to the calling process. After setup is complete, the kernel 
is instructed to execute the guest. This phase starts the loop and is not executed again during the 
loop.

2. The kernel now causes the hardware to enter guest mode. If the processor exits guest mode due to 
an event such as an external interrupt or a shadow page table fault, the kernel performs the 
necessary handling and resumes guest execution. If the exit is due to an I/O instruction or a signal 
queued to the process, then the kernel exits to the regular application logic in user mode. 

3. The processor executes guest code until it encounters an instruction that needs assistance, a fault, or 
an external interrupt. The processor then returns control to the VMM kernel.

4. If the kernel detects an exit of the guest code due to an I/O instruction or a signal, or until an external 
event such as arrival of a network packet or a timeout occurs, the kernel invokes the user mode 
component of the virtual machine process. The processed I/O instructions cover programmed I/O 
(PIO) whose implementation is not as complex as the second set of processed I/O instructions, the 
memory mapped I/O (MMIO). QEMU and a small extension for making QEMU KVM-aware is used to 
implement the I/O handling as it implements a number of emulated devices and mediates access to 
real resources when a device is accessed via the I/O instruction. QEMU has the capability to alter the 
virtual processor state to reflect the emulated I/O instruction result to the calling guest code. Once 
QEMU completes the I/O operation, it signals the kernel that the guest code can resume execution 
which is implemented with step 2 above.

In this architecture, regular applications (i.e., applications executing only in user state of the CPU and having 
full access to all services of the Linux kernel and, therefore, other parts of the operating system) coexist with 
applications that host virtual machines.

Using the RHEV Manager for administering the virtual machines of KVM using a modified libvirt management 
daemon (which is not identical to the current upstream libvirt-based management provided with the native 
RHEL 5.4 or Fedora 11 or 12), the process hosting the virtual machine does not run with root privileges. The 
processes implementing the virtual machines execute with the user ID of “vdsm” which is a normal, 
unprivileged user ID.

Unlike the RHEV Manager which is subject to the assessment of this analysis, RHEL6 will be based on the 
libvirt management framework with different security-related properties and mechanisms compared to the 
above described RHEV Manager. The following bullets provide a preview information to give the reader an 
understanding of the current development directions in the security area for KVM. Libvirt provided with 
RHEL6 restricts the capabilities of virtual machines on several layers:

• Every virtual machine process executes with the normal, unprivileged user ID of “qemu” and the 
group ID of “qemu”. This implies that these processes do not possess root privilege.

• To restrict the capabilities of a virtual machine process including which resources it can access, and 
which operations it can perform, sVirt7 will be provided to the user of KVM. sVirt is based on the 
SELinux functionality provided by the Linux kernel. It aims to isolate guests using label-based 
mandatory access control (MAC) security policy using SELinux and introduces a pluggable security 
framework to the management component of the virtual machines and an SELinux implementation. 
The sVirt framework allows guests and their resources to be uniquely labeled. Each virtual machine 
and their resources is associated with a unique SELinux category (i.e implementing a multi-category 
system). In addition, access to resources not assigned to any virtual machine is prevented. Once 
labeled, rules can be applied to reject access between different guests. The strong security policy 
enforcement provided by SELinux implies that KVM provides an additional layer of protection from 
malicious attempts to exploit security flaws.

• Every virtual machine process will be placed in a dedicated cgroup. Cgroup is a mechanism of the 
Linux kernel to mark processes and assign certain properties to these processes – every process 
spawned by an already marked process will again bear the same identifier8. Using the device 
whitelist controller with the cgroup mechanism, ACLs on devices are implemented9. Libvirt uses 
cgroups with the device whitelist controller to restrict access of each virtual machine process to only 

7 http://fedoraproject.org/wiki/Features/SVirt_Mandatory_Access_Control
8 See the file Documentation/cgroups/cgroups.txt in the Linux kernel source code tree for further information.
9 See the file Documentation/cgroups/devices.txt in the Linux kernel source code tree for further information.
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the devices assigned to this virtual machine, even though ordinary UNIX permission bits would have 
granted access to these devices. Please note that this mechanism only applies when the disk 
resource granted to a virtual machine is based on iSCSI, LVM or SANs. It does not apply to 
backends like regular files, NFS or others.

Management of the virtual machines is implemented with a the RHEV Manager, a daemon executing with the 
user ID of “vdsm”. It uses a restricted set of sudo commands to implement the execution of privileged 
commands, such as creating a logical volume used to provide the disk space for a virtual machine. This 
daemon maintains the configuration for all defined virtual machines. In addition, this daemon spawns the 
virtual machine processes discussed above. These virtual machine processes are controlled and can be 
managed, as well as terminated, by this daemon. The management daemon provides a network interface to 
allow administrator-facing applications to interact with the daemon.

To summarize, the KVM software stack consists of the following components, which have privileges to or 
manage the VMM functionality:

• The entire Linux kernel, which provides the extension to manage virtual machines, as well as the 
virtual machine processes.

• The QEMU and its KVM-wrapper executing as part of the virtual machine application. As this 
application runs with normal user privileges, the logic in the application has only restricted capabilities 
to interfere with the operations of the Linux host operating system.

• The RHEV Manager libvirt daemon controlling the virtual machines. As this daemon executes with a 
normal, unprivileged user ID, it has restricted capabilities to interfere with the operations of the Linux 
host system. However, it executes with the same user ID as the virtual machines and can therefore 
directly interfere with the execution of all virtual machines.

4.1.2 Exported interfaces

This section analyzes the interfaces offered by the privileged components of KVM.

The most important set of interfaces are those offered to the guest code, as this code must be considered 
untrustworthy by KVM. As the guest code executes within an application, the most interesting question is 
whether this guest code is allowed to use the standard interfaces exported by the Linux kernel, namely 
system calls and exceptions. The simple answer is that the Linux kernel does not allow any system call to be 
used by the guest code. In addition, exceptions are handled as discussed in section 4.1.1; that is, I/O 
exceptions are relayed to the QEMU code of the virtual machine application and other exceptions are 
handled by the Linux kernel. In addition to the standard Linux kernel interfaces, a search for interfaces 
commonly exported by a hypervisor must be conducted. Common interfaces of hypervisors are as follows:

• Hypercalls: Hypercalls have a very similar logic to system calls. Only two hypercalls are exported by 
KVM: one does not perform any operation, while the second hypercall allows the guest to perform 
some MMU interaction with the host.

• Interfaces to para-virtualized devices/resources: Support for para-virtualized devices and resources is 
under development, with a limited set of para-virtualized devices and resources available. 

• I/O instructions: I/O instructions are intercepted by the Linux kernel and forwarded to QEMU for 
handling. Therefore, these instructions are considered to be the external interface of QEMU although 
technically they are intercepted by the Linux kernel.

• IOCTLs accessible to the user space (such as QEMU) to configure virtual machines and interact with 
KVM.

In addition to the Linux kernel – the hypervisor of KVM – interfaces, the interfaces implemented by the full 
device virtualization support offered with QEMU present another set of relevant interfaces, as QEMU is 
considered to be a privileged software component in the KVM virtualization software stack, as discussed in 
section 4.1.1. The interface offered by QEMU to the guest code is established with I/O instructions. The 
number of I/O interfaces depends on the number of emulated devices. A list of emulated devices can be 
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obtained from the man page qemu(1)10. As QEMU might invoke real resources based on the received I/O 
instructions, QEMU also must process the responses from the invoked resource. As the responses can 
hardly be influenced by the calling guest code, this QEMU interface is not further considered.

Please note that with para-virtualized device support, the size of the code needed for providing access to the 
resource/device is much less than for fully virtualized devices/resources. In addition, for KVM, the para-
virtualized backend is implemented as part of QEMU and not in the host Linux kernel as one would expect 
considering other hypervisor implementations. This implies that for the para-virtualized resources/devices, the 
executed privileged code is less than the full simulation code. However, as both code paths are provided to 
the guest code, the number of interfaces and the code size increases with the development of new para-
virtualized devices/resources. KVM for RHEL5.4 provides only one para-virtualized device backend: a block 
device driver.

The next software component to be analyzed for interfaces is the libvirt management daemon. It provides a 
network interface as well as a UNIX domain socket; both interfaces can be enabled or disabled with the 
configuration of the management daemon. The network connections may be protected using TLS/SSL, SASL 
and Kerberos. The UNIX domain socket can be protected with the proper permission settings on the UNIX 
domain socket device file. In addition, read-only and read-write permissions can be configured when using 
UNIX domain sockets. As this interface should be tightly controlled either by using the provided access 
control mechanisms or by making the daemon accessible from a dedicated administrative LAN only, this 
assessment assumes that this interface is well protected so that it cannot be accessed by any untrusted 
entities, either using the guest code or using the network connections to the guest code that are mediated by 
the host operating system. This implies that the external entities are considered to have no access to this 
management daemon, which results in the conclusion that the security aspects and potential security flaws of 
this management daemon are irrelevant for this discussion.

4.1.3 Assessment of security concerns

With regard to the security concerns enumerated in chapter 3, the KVM implementation can be characterized 
as follows.

Code handling, virtual machine instantiation, and exceptions are implemented in one Linux kernel module 
supported by an additional kernel module implementing the CPU-specific logic. The size of the code is not 
overly large (about 650kB of C code). However, for the proper operation of the entire VMM logic, the 
remainder of the Linux kernel is also important, as it schedules the virtual machines, performs memory 
management, implements the device drivers for the physical devices, and provides other essential services. 
In addition, the Linux kernel cannot be separated from the KVM kernel modules at runtime, as both parts run 
in the same address space with the same hardware privileges of executing in the hypervisor mode of the 
processor11. As such, both the Linux kernel and the KVM kernel modules rely on each other for ensuring that 
the security objectives for a VMM are achieved. This results in the finding that the entire Linux kernel must be 
considered part of the software stack. As QEMU with the KVM wrapper logic is also part of the software stack 
but execute with a normal unprivileged user ID, potential security deficiencies can only have a very limited 
effect on the Linux host system. Nevertheless, as all QEMU instances for different virtual systems as well as 
the libvirt management daemon execute with the same user ID, potential security issues may have an impact 
on the proper isolation of the virtual machines from each other. In essence, the size of the software stack is 
considered to be medium level compared to other implementations.

The number of interfaces offered to external entities covers a very limited set implemented by the KVM kernel 
modules, as para-virtualized device driver is not yet fully implemented. On the other hand, the interfaces 
provided by the full virtualization logic provided with QEMU are large in size, as multiple different emulated 
devices are offered. This results in the determination that the number of interfaces exported to external 
entities is considered to be in the medium range compared to other implementations.

Considering the development regime applied to the development of KVM, the two components relevant for 
our assessment are considered separately:

10 Please note that for emulating a VGA device and for supporting the boot sequence of the guest, an additional BIOS 
is emulated by code that is technically maintained outside of QEMU, but is logically considered to belong to QEMU. 
Thus, every time QEMU is referred to, this BIOS is also implied in this reference.

11 The hypervisor mode is also called the root mode on Intel-based CPUs
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• KVM Linux kernel module and KVM wrapper user code development: The kernel module 
development is considered to receive a fairly high amount of review from peer developers inside Red 
Hat, as well as from the Linux kernel development community, as the kernel modules are part of the 
upstream Linux kernel. In addition, regular analysis of the Linux kernel with Coverity12, as well as 
performance of third-party reviews, supports the code quality and reduces the number of flaws. The 
size of the KVM wrapper for QEMU in user mode is considered negligible, as it is small and does not 
implement much logic.

• QEMU development: The QEMU development is a standard open source project, but does not 
receive as much attention as the Linux kernel. Development rests with a small development team 
supported by occasional review by Linux distribution vendors.

The Red Hat approach to monitoring sources for bug reports and maintaining a dedicated security team 
supported by other security teams from other Linux vendors to handle bug fixes is considered to be fully 
supportive to ensuring that once a security-relevant flaw has been found, a fix will be released in an 
appropriate time frame. Comparing this approach to practices of other vendors and implementations, there is 
a high level of code assurance for the Linux kernel and the KVM kernel modules. Considering QEMU 
development, it does not receive much attention from other parties and few code inspection tools are utilized, 
but Red Hat provides the same efficient security flaw fix process as for the Linux kernel, and this results in the 
conclusion that overall, there is a medium assurance of code quality for the QEMU component.

4.2 Xen

4.2.1 Architecture

Xen is a VMM implementation based on a small separation kernel, the hypervisor, which performs the 
separation of different virtual machines. The goal of the separation kernel is the isolation of the virtual 
machines in terms of preventing access to resources belonging to one virtual machine — mainly memory, 
CPUs, and virtual machine scheduling — by another virtual machine. The hypervisor operates in a privileged 
CPU mode, which allows the hypervisor to protect its operation from interference by any guest operating 
system.

In Xen terminology, every virtual machine is called a domain, or dom in shorthand.

As the hypervisor separates only a subset of available resources, it is supported by an additional software 
component that mediates access to additional resources by the domains. This additional software component 
is a special Linux operating system that resides in a privileged domain called Dom0. Using the Dom0 logic, 
access to resources like network devices or block devices (i.e., hard disks) is established. The hypervisor 
grants Dom0 special rights to access physical I/O resources. Dom0 is used exclusively for mediating access 
to resources and the administration of Xen, as it also provides management tools and interfaces. Dom0 is the 
very first virtual machine that is automatically instantiated after the Xen hypervisor is loaded.

Any other virtual machine is provided for general purpose use and does not possess any special privileges 
with respect to Xen. These general-purpose virtual machines are called DomU. Xen defines two types of 
virtual machines:

• PV guests: PV guests (para-virtualized guests) contain support for inter-operation with Xen. Inter-
operation covers aspects where the para-virtualized guests use special interfaces provided by either 
the hypervisor or Dom0, such as virtual memory management or device drivers. In addition, the guest 
operating system must be aware of the fact that it has not full control over the physical machine. PV 
guests are not further considered in this assessment.

• HVM guests: HVM guests (hardware virtual machine guests) are unmodified guest operating systems 
that require full virtualization of the hardware. Similar to KVM, Xen provides full virtualization via 
QEMU. In addition, HVM guests may use para-virtualized device drivers to use the Xen-offered 
resources more effectively.

Figure 2 depicts the architecture of Xen.

12 See http://scan.coverity.com/rungAll.html

KVM Security Comparison Released Classification: public Page 15 of 39
Version: 1.01 © 2009 atsec information security corporation



Figure 2 shows the Dom0 and the DomU virtual machines. In addition, this figure documents the 
communication relationships between the domains, Dom0, and the hypervisor.

As already indicated, HVM guests with para-virtualized drivers cooperatively interact with Xen to ensure 
efficient resource access and as such. This implies that these guests access their resources much faster than 
HVM guests with native device drivers. The cooperation between para-virtualized device drivers and Xen is 
twofold:

• Concerning memory management and registering of callback functions that allow the hypervisor to 
inform the guest kernel about events, the guest uses hypercalls, which are conceptually equivalent to 
system calls exported by the hypervisor. The hypervisor is responsible to react to the requests of the 
guest.

• For access to other resources (figure 2 depicts access to a network resource and a block storage 
driver), the vpara-virtualized device driver implements a frontend that effectively makes the device 
known to the guest operating system and translates access requests from the OS into requests that 
can be sent to the backend driver counterpart. That backend driver resides in the Linux kernel of 
Dom0 and interfaces with the physical device driver of the Linux kernel to perform the requested 
action. As only one instance of each backend driver is established in Dom0, the backend driver must 
ensure that it keeps track of where the request originates and whether the requester is allowed to 
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Figure 2: Xen domains and communication relationships
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perform the request (i.e., whether the requester is granted access to the requested resource), and 
must track that the response is sent back to the requester. The hypervisor provides a bi-directional 
communication channel between the DomU and the Dom0, called an event channel implemented 
supported with shared memory on top of the Xenbus inter-virtual machine communication channel. 
The event channel is implemented with ring buffers maintained in memory that is shared between the 
tow communicating domains by the hypervisor. Event channels operate as asynchronous delivery 
systems that are also used to deliver interrupts.

HVM guests with native drivers are implemented without the knowledge of Xen. As such, Xen must emulate 
devices for all  device drivers available in the guest operating system. When the guest operating system 
performs I/O operations on a device, Xen intercepts the request and forwards it to Dom0. In Dom0, one 
process per HVM guest hosts QEMU. QEMU performs the emulation of the device and translates requests 
into access requests to real devices offered by the Linux operating system in Dom0. To boot an HVM guest, 
Xen places a virtual BIOS into every DomU, which ensures that the guest operating system finds all 
resources and instructions it expects from a boot procedure on native hardware.

The current implementation of Xen allows placement of QEMU support into a DomU, where QEMU executes 
on a dedicated mini-operating system that implements the para-virtualized frontend drivers for the exported 
devices. These para-virtualized drivers in turn access the respective para-virtualized backend drivers of 
Dom0. In this configuration, the special DomU, also called Stubdom, operates like a para-virtualized guest 
that can be the recipient of I/O instructions. Figure 3 shows this configuration option. One Stubdom can 
service only one general-purpose guest domain, but allows flexible configurations. With the configuration of 
QEMU executing in Dom0 for HVM guests, QEMU executes as root daemon. To prevent abuses from 
potential QEMU exploits, the use of Stubdoms effectively separates all QEMU instances from one another, 
reducing the size of the trusted software stack of Xen – please note that the privilege QEMU is considered to 
possess results from the fact that QEMU executes as root in Dom0. But Dom0 is also privileged, which 
means that if QEMU were to have a security flaw, that flaw could be exploited to use those privileges. Such 
an exploitation cannot occur if QEMU is executed in a dedicated DomU.
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The Xen hypervisor implements an access control schema based on the Flask logic implemented in SELinux 
as well as sHype developed by IBM Watson Research Lab. The implementation is based on the ACM 
security call backs. Both access control mechanisms allow the specification of rules governing multi-level 
access control, multi-category access control, role-based access control, as well as type enforcement can be 
implemented. Similar to SELinux, a policy to define the rule set enforced by Flask is required. This rule set is 
loaded by Dom0 into the hypervisor. Currently, only a rudimentary policy is available; the policy might be 
extended in the future, but is not further considered for this assessment. Also for sHype, a rule set needs to 
be defined and implemented as no default rule set could have been identified.

Dom0 hosts a registry daemon, xenstored, which maintains the configuration and state information for each 
domain. This registry daemon is accessible from every domain via the Xenbus maintainted by the hypervisor. 
Any guest can read any part of the store, but only if it has permission to do so. Dom0 may read or write 
anywhere in the store, regardless of permissions, and permissions are set up by the tools in Dom0, or by 
xenstored when it first starts up.

To configure Xen, a networked administration daemon executes on Dom0. Command-line tools that use the 
network interface to configure the domains are provided. The daemons execute as root and, therefore, must 
be trusted to perform the requested operations. 

To summarize, the Xen software stack consists of the following components that have privileges to interfere 
with or manage the VMM functionality:

• The Xen hypervisor provides the separation kernel on which rests proper memory management and 
inter-domain communication. As such, it is the main trusted component.
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Figure 3: Xen and Stubdom - isolation of QEMU
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• The entire Linux kernel executing in Dom0, which ultimately mediates access to the physical 
resources. In case of the use of para-virtualized backend drivers, these drivers share memory with 
the rest of the kernel and utilize the Linux kernel physical device drivers. In addition, if QEMU support 
in Dom0 is configured, the Linux kernel is needed to allow the user space QEMU process to access 
the requested hardware. Therefore, the entire kernel is relevant to maintain the secure operation of 
the VMM.

• If HVM is configured and QEMU support in Dom0 is utilized, then QEMU also needs to be trusted, as 
it executes as root. As such, it has the potential to interfere with the operation or configuration of 
Dom0 and implicitly with any other domain. If a security flaw were to be embedded in QEMU, it could 
be used to circumvent protection mechanisms configured in Dom0.

• The xenstore daemon provides the configuration information for every domain and is consulted by 
the different components of Xen.

• The management daemons executing in Dom0 controlling the virtual machines. As the daemon runs 
with root privileges, the logic in the application might interfere with the entire operation provided with 
Dom0.

4.2.2 Exported interfaces

In addition to examining the architecture of Xen, identification of the interfaces offered by the privileged 
components of Xen is vital.

The central component is the Xen hypervisor. The hypervisor provides the following types of interfaces:

• Hypercalls: Hypercalls are equivalent to system calls exported by the hypervisor to guest operating 
system kernels. With these hypercalls, guest operating systems can directly request services from 
the hypervisor. Such services include memory management cooperation with the hypervisor and 
registration of event handlers for the event channel. A number of available hypercalls are restricted to 
Dom0, where the hypervisor verifies that the calling domain is Dom0. Such privileged hypercalls 
include the domain configuration at runtime (domctl), system parameter settings (sysctl), access 
control settings (acm_op), and others. Although only 39 hypercalls are implemented, many of these 
hypercalls contain de-multiplexing code, where a hypercall is used to trigger many different 
mechanisms selected with a command flag supplied as part of the hypercall. As such, architecture-
wise, the number of actual hypercalls (i.e., individual mechanisms that can be invoked) is significantly 
larger than the number of hypercall interface functions exported to the domains. For the assessment 
of security impact, hypercalls exported only to Dom0 are considered to be inaccessible to untrusted 
entities, as Dom0 must be considered to be appropriately protected. Therefore, only a subset of all 
implemented hypercalls is considered relevant for further assessment of security issues.

• Event channels and shared pages: Event channels supported by shared pages enabling the bulk 
data transfer establish communication between two domains based on shared memory. The Xen 
hypervisor establishes the channel, but does not act upon the information flowing through that 
channel. Therefore, this channel is considered to be the external interface of the para-virtualized 
backend drivers discussed below.

• Xenbus: The Xenbus is used for configuration negotiation and other meta information transport. It is 
used to notify other domains about events. The data transport between domains is left to the event 
channels with the shared pages.

• I/O instructions: I/O instructions are intercepted by the Xen hypervisor and forwarded to QEMU for 
handling. Therefore, these instructions are considered to be the external interface of QEMU, although 
technically they are intercepted by the hypervisor.

The para-virtualized backend drivers export their interfaces to untrusted entities via event channels. As the 
para-virtualized frontend drivers executing in the guest operating system kernel cannot be trusted to operate 
correctly or to be used at all when accessing the event channels, the current assessment relies on the 
technically-enforced interface that separates external entities from the trusted code. Therefore, the protocol 
between the frontend drivers and the backend drivers flowing through the event channel is considered to be 
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the external interface. The following backend drivers are currently available and implement external para-
virtualized interfaces to domains:

• Block-device backend driver: Allows the kernel to export its block devices to other guests via event 
channels.

• Block-device tap backend driver: An alternative to the block back driver that allows VM block 
requests to be redirected to user space through a device interface. The tap allows user space 
development of high-performance block backends, where disk images may be implemented as files, 
in memory, or on other hosts across the network. This driver can safely coexist with the existing 
block-device backend driver.

• Network-device backend driver: Allows the kernel to export its network devices to other guests via 
event channels. As a sub-category, a special pipelined transmitter is available, as well. In addition, a 
special network-device backend driver accelerator for Solarflare network interface cards is available. 
Also, a network-loopback driver backend is configurable.

• PCI-device backend driver: Allows the kernel to export arbitrary PCI devices to other guests.

• TPM-device backend driver: This driver provides access to the virtualized TPM support provided by 
the underlying hardware. 

• SCSI backend driver: Allows the kernel to export its SCSI devices to other guests via a high-
performance shared-memory interface.

• USB backend driver: Allows the kernel to export its USB devices to other guests.

In addition to the Xen hypervisor interfaces, the interfaces implemented by the full device virtualization 
support offered with QEMU present another set of relevant interfaces, as QEMU is considered to be a 
privileged software component in the Xen virtualization software stack, as discussed in section 4.2.1. The 
interface offered by QEMU to the guest code is established with I/O instructions, but QEMU also may have 
direct access to the calling domain's memory, in case memory operations need to be performed. The number 
of I/O interfaces depends on the number of emulated devices. A list of emulated devices can be obtained 
from the man page qemu(1). As QEMU might invoke real resources based on the received I/O instructions, 
QEMU also must process the responses from the invoked resource. As the responses can hardly be 
influenced by the calling guest code, this QEMU interface is not further considered.

The xenstore daemon hosting the configuration of the different virtual machines can be accessed from DomU 
via the XenBus protocol mediated through the Xen hypervisor. XenBus provides a bus abstraction to support 
the establishment of event channels for para-virtualized drivers. In practice, the bus is used for configuration 
negotiation, leaving most data transfer to be done via an inter-domain channel composed of a shared page 
and an event channel.

The set of privileged software covers the administrative aspects. Network interfaces are provided by the 
management daemon to allow remote management of Xen. However, as administrators have inherent 
privileges to modify the configuration of domains and security properties of Xen, this assessment assumes 
that the external interfaces provided with the management facilities are technically restricted. In addition, any 
shell-level access to Dom0 is considered to be restricted. Only trusted administrators are assumed to have 
the potential to access these interfaces. This may be achieved by use of a dedicated network interface, 
where the administrative facilities listen exclusively. This network interface is restricted to an administrative 
LAN. Therefore, the interface and the administrative mechanisms in general and shell-level access to Dom0 
are considered to be out of reach for untrusted external entities and, therefore, out of scope for this 
assessment.

4.2.3 Assessment of security concerns

With regard to the security concerns enumerated in chapter 3, the Xen implementation can be characterized 
as follows.

The software stack that operates in privileged mode with respect to security-relevant mechanisms contains 
the Xen hypervisor as the core of the virtualization mechanism. The hypervisor is considered to be of mid-
range size, as its code size is about 13MB. It cannot be regarded as a true minimalistic separation kernel, 
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which would only require a few thousand lines of code – please note that a sizable part of the software 
provides support for para-virtualized guests where no hardware-based virtualization support is available 
which is not considered here and therefore this functionality is not considered to be accessible. On the other 
hand, it is not a massive kernel, like the Linux kernel for KVM. In addition, the entire Linux kernel in Dom0 is 
considered to be trusted, as it always mediates access to the physical devices, regardless of whether the 
access request is made  through QEMU or through the para-virtualized backend drivers. The entire kernel is 
considered to be security sensitive, as the entire kernel operates the same address space with the same 
privileges to access resources. Therefore, any component within the Linux kernel must be trusted. In addition, 
the xenstore daemon is security sensitive, as it is accessible from every domain, and stores and manages the 
configurations of every domain. This daemon is consulted by the hypervisor to set up the proper parameters 
for each domain. Depending on the configuration, QEMU is also considered to be part of the trusted software 
stack if HVM guests are configured without a Stubdom. When considering the entire stack with QEMU, it is 
much larger than the software stack needed for KVM and is, therefore, considered to be medium-to-high level 
compared to other implementations.

On the other hand, if the HVM domains are configured to execute QEMU in a Stubdom or there are no HVM 
domains, QEMU can be considered as not relevant for maintaining security, as it cannot interfere with the 
security implications of Xen. When excluding QEMU from the software stack, Xen can be considered to be of 
similar size to KVM, as QEMU needed by KVM is a bit larger than the Xen hypervisor source code which is 
not present in KVM. Therefore, without QEMU, the size is considered to be medium level.

The number of interfaces offered to external entities covers a set of hypercalls implemented by the Xen 
hypervisor. In addition, para-virtualized backend drivers in the Linux kernel of Dom0 provide another sizable 
set of interfaces, as there are several of those para-virtualized drivers available. On the other hand, the 
interfaces provided by the full virtualization logic provided with QEMU are large in size, as multiple different 
emulated devices are offered. Finally, the xenstored interfaces also must be considered. This results in the 
conclusion that the number of interfaces exported to external entities is considered to be in the high range 
compared to other implementations. Therefore, the set of interfaces available to one particular domain is 
considered to be at a high level.

With regard to the development process applied to development of the different components of the Xen 
software stack, the components relevant for our assessment are considered separately:

• The Xen hypervisor is developed as an independent open source project. A large number of 
commercial vendors support the development. Also, the IBM Watson Research Lab reviewed the 
hypervisor code and contributed the sHype security enhancement. However, it is unknown whether 
code analysis tools are employed on a regular basis. As such, the hypervisor is considered to be well 
reviewed by many parties, providing a medium-to-high assurance of code quality.

• The Xen management tools including the xenstore daemon, are also part of the development project, 
together with the Xen hypervisor. However, as they are not regarded as the most critical and complex 
logic and also reside in Dom0, a medium assurance of code quality can be assumed, considering 
that the developer base is much smaller, reviews from third parties are limited and it is also unknown 
whether code analysis tools are employed.

• The Xen Dom0 Linux kernel patches unfortunately are not part of the upstream Linux kernel and as 
such, are not covered by the same code standards considered for the kernel. Independent of the 
Linux kernel community discussions about these patches, they have some drawbacks for 
administrators: they are accessible for older kernels only (2.6.18 is the latest kernel). As such, 
security fixes for the Linux kernel must be backported to this old kernel. Some distributors no longer 
support such backporting. Even though these out-of-tree patches can be considered to have good 
code quality, the application of them to an old Linux kernel does not support the maintenance of a 
secure system. Please note that this issue applies to the Dom0 Linux kernel only, but as discussed 
above, it is considered part of the trusted code base. Therefore, based on this patch issue only, a 
low-to-medium assurance of code quality must be assigned. Note that there are renewed efforts 
underway to push the Dom0 patches into the upstream Linux kernel.

• Dom0 Linux kernel development is considered to receive a fairly high amount of review from peer 
developers inside Red Hat, as well as from the Linux kernel development community. In addition, the 
Linux kernel is regularly analyzed with Coverity, and third-party reviews are performed. Both of these 
practices support the code quality and reduce the number of coding errors including security flaws. 
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Apart from the issue around the Dom0 patches discussed above, the Linux kernel code quality must 
be considered high.

• QEMU development is a standard open source project, but does not receive as much attention as the 
Linux kernel. Development rests with a small development team supported by occasional review by 
Linux distribution vendors.

Although the support by Red Hat for Xen may be reduced, the current RHEL distribution still includes Xen. 
This implies that Red Hat provides bug fixes for Xen at the same level as for other parts of the distribution. 
The Red Hat approach to monitoring sources for bug reports and maintaining a dedicated security team to 
handle bug fixes is considered to be fully supportive to ensuring that once a security-relevant flaw has been 
found, a fix will be released in an appropriate time frame. When compared to the practices of other vendors 
and implementations, this approach provides additional assurance of code quality and security flaw 
remediation.

Based on the enumeration of the different software components, an overall quality of medium can be 
awarded. If resolution of the issue around the Dom0 patches results in integration of these patches into the 
upstream kernel, a medium-to-high level of assurance is considered.

4.3 VMWare ESX Server
The analysis of VMWare ESX is limited because it is proprietary software and, therefore, limited design 
information is available. This assessment covers as much information as possible. In case of insufficient 
available information, the assessment will mark this fact appropriately.

Please note that the assessment focuses on the VMWare ESX implementation, which differs from the ESXi 
version by adding a Linux-based. ESX provides a Linux-based service console for accessing and managing 
the virtual machines. This service console is greatly minimized to provide only small shell access and network 
access for management components that are executed on remote administration servers on ESXi. The 
hypervisor and the concept of managing virtual machines, however, are identical between the ESX and ESXi 
products.

4.3.1 Architecture

Initially, all virtualization products originating from VMWare implemented a virtualization technique called 
binary translation. Binary translation means that the hypervisor intercepts the entire instruction stream of all 
guest operating systems and translates them to real processor instructions. As part of the translation, the 
hypervisor verifies that the instruction parameters do not violate the bounds defined for the virtual machine in 
which the guest executes. For separating memory, the hypervisor uses the segmentation engine of the 
processor. As such, the hypervisor executes in the ring 0 privilege level of the x86 CPU and moves the guest 
operating systems into the ring 1 privilege level. The architecture of the hypervisor implementing the binary 
translation is considered very complex. As VMWare ESX server implements support for the Intel VT-x, as well 
as the AMD-V extension, the current assessment disregards the binary translation support. Although still 
implemented, the binary translation is only used on CPUs where the mentioned extensions are available. This 
also implies that the administrator does not configure binary translation as mandatory.

VMWare ESX consists of a hypervisor separation kernel called vmkernel, whose primary function is to 
ensure the separation of the virtual machines from each other. To ensure the separation of the virtual 
machines, the hypervisor mediates access to a set of resources that are exclusively assigned to virtual 
machines. The following components are contained in the hypervisor13:

• Resource scheduling including virtual memory management ensures that the memory allocated to 
virtual machines is not overlapping. In addition, this component ensures that virtual machines are 
scheduled on the available physical CPUs.

• The user world API implements a subset of a POSIX-compliant interface for supporting services. The 
supporting services are implemented outside of the hypervisor and execute on top of the hypervisor, 
similarly to the virtual machines. 

13 See http://www.vmware.com/files/pdf/ESXServer3i_architecture.pdf
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• Storage support and device drivers for different storage hardware solutions are implemented in the 
hypervisor. As such, the storage requirements of the virtual machines are covered.

• Networking support including the respective physical device drivers for network hardware is also 
implemented in the hypervisor. As part of the networking support, the hypervisor provides virtual 
Ethernet adapters to virtual machines and implements an Ethernet switch for these virtual adapters.

Figure 4 shows the structure of the hypervisor and its supporting software.

In addition to the hypervisor, VMWare ESX provides additional services that execute outside of the hypervisor 
along with the virtual machines. These additional services are considered as “user world”. The user world 
provides services like remote management access via the Common Information Model (CIM) broker, a small 
shell-like management console (the DCUI), SNMP support, Syslog support, VMX helpers, and others. One 
VMX helper is initiated per virtual machine and provides the emulated hardware environment to allow the 
execution of full virtualized guests. It is unclear as yet how strongly the VMX instances are separated from 
each other. To support the booting of guest operating systems, a virtual BIOS is placed in the virtual machine 
memory to allow operating systems to find the same kind of environment as on a native hardware.

Considering the description of the VMI hypercall interface specification14 published by VMWare, the 
hypervisor provides a number of hypercalls for para-virtualized guests. As para-virtualized guests are not 
considered, it is unclear how many of these interfaces are still available to hardware-based virtual machines 
and using para-virtualized drivers. Para-virtualized device driver support is provided by the hypervisor for 
memory management, I/O devices, and other calls. As no further information about the internal design is 
available, a reliable picture of how para-virtualized device drivers are handled cannot be given. However, it 
may be assumed that the para-virtualized driver support is provided by the hypervisor kernel, which also 
implements the physical device drivers. 

To summarize, the VMWare ESX software stack consists of the following components that have privileges to 
interfere with or manage the VMM functionality:

• The vmkernel hypervisor is the core of the virtualization mechanism, as it maintains the virtual 
machines and enforces the separation of them by managing the resources assigned to the virtual 
machines.

• The VMX helper implements full virtualization support by emulating the devices accessible by the 
respective virtual machines. As these VMX helpers have access to the user world API, it is assumed 
that they also potentially have access to administrative interfaces provided by the hypervisor. As 

14 See http://www.vmware.com/pdf/vmi_specs.pdf
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such, the VMX helper must be considered trustworthy to ensure proper virtual machine separation. 
These helpers use Linux drivers provided with VMKLinux to implement the connection to devices.

• The system management helpers are considered to be part of the trusted software stack, as they are 
provided for performing administrative tasks. As such, these software components have the potential 
to modify the virtual machine configuration and, therefore, the separation functionality of VMWare 
ESX. The service console is a limited distribution of RHEL5 and “provides an execution environment 
to monitor and administer the entire ESX host”15. As the service console administers the entire ESX 
host and therefore has privileged access to virtual machines and their configurations, at least the 
privileged components of the service console must be considered trustworthy, which include the 
Linux kernel and all applications that execute with root privilege. Due to the proprietary nature of 
VMWare, the interfaces to the vmkernel, VMX instances or other parts of the ESX product are 
unknown. Therefore, it is unclear whether even non-root application may have the potential to interact 
with other, privileged parts of the ESX software stack. If this would be the case, even these non-root 
applications would need to be added to the trusted software stack.

4.3.2 Exported interfaces

A number of different types of interfaces are exported to external entities from components of the trusted 
software stack. The first interface is the set of hypercalls provided by the hypervisor. It is assumed that the 
hypercalls follow the VMI specification defined by VMWare. However, it is unclear whether the documented 
VMI interfaces are all technically-accessible hypercalls or whether only a subset of the VMI calls are 
implemented in case of hardware-based virtualization and para-virtualized device drivers. A hint may be the 
data structure Vmnix_VTable defined in the Linux kernel source code for the service console in 
include/linux/esxsc.h which lists callback functions for various mechanisms which seem to be implemented by 
the vmkernel. But again, it is unclear whether these interfaces can be triggered from virtual machines.

In addition, for full virtualized guests, the hypervisor must trap the I/O-related processor instructions and 
forward them to the respective VMX instance for further operation. This VMX instance mediates access to the 
resources configured for the calling virtual machine.

The system management helpers provide network access to manage the virtual machines. The service 
console, a CIM broker, and other tools are provided to allow remote administration interfaces to manage the 
virtual machine settings. For this assessment, however, the management interfaces are considered to be 
restricted to authorized administrators, where other external entities have no technical ability to interact with 
these interfaces. As such, this interface is considered to be irrelevant for the discussion. Furthermore, as the 
system management helpers are inaccessible by untrusted external entities, potential security-relevant flaws 
in their functionality cannot be abused. Therefore, the system management helpers are out of scope for the 
reminder of this assessment.

However, the following interfaces are unclear from the documentation provided around VMWare ESX. As 
these issues are unclear, they are not further considered:

• It is unclear whether the user world API is technically accessible from the virtual machines. If so, this 
API is also considered to be an external interface.

• The interfaces between the virtual machines and the para-virtualized devices are not fully defined. 
Therefore, the lines between the virtual machines and the device drivers in the hypervisor are marked 
with a dotted line in figure 4, as this architecture cannot currently be verified.

4.3.3 Assessment of security concerns

With regard to the security concerns enumerated in chapter 3, the VMWare ESX implementation can be 
characterized as follows.

The software stack that must be trusted to maintain the proper operation of security-relevant mechanisms 
includes the hypervisor, as well as the VMX helper. The size of both cannot be estimated, as no access to the 
source code is available. Considering the vmkernel file that implements the hypervisor, a significant part of 
the file is not considered to be active, as it implements the binary translation code, which is considered to be 

15 See http://www.vmware.com/pdf/vsphere4/r40/vsp_40_esx_server_config.pdf, chapter 11.
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inactive in the configuration scenarios outlined here. However, considering the available information, the size 
of the software stack is considered to be low-to-medium, because there is no full-fledged general purpose 
operating system kernel part of the trusted software stack (which lowers the size significantly), and VMWare 
ESX adds the full virtualization support with VMX (which increases the size).

The set of interfaces exported by the software stack that is considered to be trusted covers the hypercalls 
exported by the hypervisor. In addition, the I/O interfaces provided with the full virtualization by the VMX 
helper is another set of interfaces. As already outlined in section 4.3.2, additional interfaces might be 
available to external entities. Therefore, a reliable assessment of the number of available interfaces is not 
possible and is, therefore, not performed here. However, considering the available information, the number of 
the interfaces is considered to be medium-to-high, at a similar level as Xen with QEMU, but without the 
xenstore daemon.

With regard to the development environment, VMWare's strategies about how to handle security-relevant 
flaws and monitor different sources for flaw reports is not fully public knowledge. Therefore, the development 
environment and resulting code quality cannot be reliably assessed. However, considering the Common 
Criteria evaluation of VMWare ESX server 3.0.2 at EAL4 augmented with ALC_FLR.1 and assuming that the 
evaluated development procedures apply to the currently-discussed version of VMWare ESX server, the 
development environment can be characterized as follows:

• Development of code is subject to developer peer review.

• Procedures exist to address security-relevant flaws and publish fixes.

Considering the Common Criteria evaluation, a medium assurance of the code quality can be assumed. 
Please note that this assessment states the lower boundary of the assurance given by VMWare. Procedures 
may exist that require a much more stringent code review and security flaw remediation than assessed by the 
Common Criteria evaluation.

5 Security Comparison Based on Scenarios
In the previous chapter, the analyzed VMM implementations are presented with their architectures and 
interfaces. Initial estimates of the attack surface are given, supported by the discussion of how and how 
quickly identified security-relevant flaws will be fixed.

To add another aspect to the comparison of the VMMs with respect to security behavior and mechanisms, 
this chapter defines a number of attack and usage scenarios, which are used as a basis for comparison. The 
comparison of security characteristics of the different VMM implementations is based on the attack vectors 
and usage scenarios introduced in the sections below. Each attack vector and usage scenario is analyzed to 
identify the mechanisms provided by each VMM to either counter and mitigate the threat, or to support the 
usage scenario.

The scenarios outlined below are standard issues a VMM implementation must be able to handle in day-to-
day operations. This list could be extended by other scenarios, but the current assessment limits its focus to 
these scenarios.

The goal of the security comparison is to enable readers to understand how different VMM systems support 
day-to-day operations, so that they can identify whether a particular VMM is suitable for their intended 
workload and IT environment.

The following table summarizes the assurance the examined VMM implementations provide for covering the 
security aspects in case of a security-relevant flaw. The given assertions are relative to each other and do not 
provide any hint of absolute assurance for the respective VMM (as such, a value of “low” might still mean that 
even if a security-relevant flaw is found, it might be very hard to actually exploit it). The assessment assumes 
the most secure configuration possible to mitigate the outlined threats – the sections below outline these 
configurations.
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Scenarios KVM Xen VMWare ESX 
Server*

Assurance of protection against VM accessing unassigned 
resources mediated by para-virtualized drivers

Medium16 Low Low

Assurance of protection against VM accessing unassigned 
resources mediated by full virtualization support software

Medium17 Stubdom: Medium
Default: Low

N/A

Assurance of protection against subversion of trusted 
VMM software – subversion of Hypervisor

High18 High Medium

Assurance of protection against Subversion of trusted 
VMM software – subversion of other virtual machines

Medium19 Stubdom: High
Default: Medium

N/A

Assurance of protection against Subversion of trusted 
VMM software – subversion of boot process

High20 Stubdom: High
Default: Medium

N/A

Assurance of protection against one VM causing a DoS of 
other VMs

High Medium Medium

Support for sandboxing usage High Medium Low

VMs belong to different security domains Low21 Medium Low

Table 4: Assessment of coverage of security aspects based on scenarios in relation to each VMM

*The assessment of the VMWare ESX Server is based on knowledge obtained from public information. If 
VMWare ESX Server also includes additional mechanisms relevant to the scenarios described, the 
assessment might be incomplete.

The sections that follow elaborate on the summaries given in the table. 

5.1 Guest VM access to unassigned resources

5.1.1 Attack scenario

The main goal of a VMM implementation is to restrict a guest operating system's access to assigned 
resources. Any resources not assigned to the virtual machine hosting the guest operating system must be 
forbidden. This statement applies to all kind of resources: physical resources, virtualized resources (i.e., 
physical resources where only a part or just some types of access are allowed by a virtual machine), or 
emulated resources (i.e., logical resources that are not backed by physical resources).

From the point of view of the VMM implementation, any code executing within a virtual machine is considered 
to be untrusted. Any information, access requests and other interactions with the code in the virtual machine 
must first be sanitized before the VMM can use it to perform operations with the potential to access resources 
that might not have been assigned to the virtual machine.

That said, threats arising from virtual machines that must be countered by the VMM must be considered to 
originate in the virtual machine's user state and supervisor state. Therefore, the VMM cannot even trust the 
kernel of the operating system executing within the virtual machine. Effectively, the VMM must still enforce 
access restrictions to resources if the entire operating system in a virtual machine has been completely taken 
over and the attacker has full access to the user space and kernel space of the virtual machine.

For this attack scenario, therefore, the following is considered:

16 Assessment is “Medium to High” if sVirt is considered due to the fact that the SELinux separation enforcement also 
covers para-virtualized devices provided by the QEMU logic to the guest system. However, in newer 
implementations of KVM, para-virtualized devices may be provided by the Linux host system, limiting the effect of 
SELinux in this area.

17 Assessment is “High” if sVirt is considered.
18 Assessment is “High” if sVirt is considered.
19 Assessment is “High” if sVirt is considered.
20 Assessment is “High” if sVirt is considered.
21 Assessment is “High” if sVirt is considered.
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• An attacker has full access to user and kernel space of one regular general purpose virtual machine.

• An attacker has full access to all interfaces offered by the VMM to a virtual machine.

• An attacker tries to access resources that are unassigned to its virtual machine. These resources 
include physical, virtualized, and emulated resources.

5.1.2 General discussion of scenario

For assessing the outlined scenario, all components of the VMM mediating access to resources have to be 
considered. The following components are identified:

• Para-virtualized device driver support requires that access to resources is usually mediated either by 
drivers operating as part of the hypervisor (VMWare ESX) or as part of the Linux kernel in the 
privileged virtual machine (Xen). Only KVM implements these backends external to the hypervisor in 
an unprivileged environment, the QEMU process. These drivers mediate access requests from virtual 
machines to the respective resources. The implementations for VMWare and Xen have one aspect in 
common: there is only one instantiation per driver that mediates access for all virtual machines. For 
KVM, there is still one driver instance per virtual machine.

• Full virtualization support is mediated by a separate software component executing outside the 
hypervisor. This support is provided with QEMU (KVM, Xen) or VMX (VMWare ESX). For the full 
virtualization support software, the VMM implementations have one aspect in common: one instance 
of the software component is dedicated to handling the requests of one virtual machine. This implies 
that there are a number of instances of this software component equal to the number of virtual 
machines executing on the system.

All software components mediating access to resources have the goal to restrict access requests to the 
resources configured for the calling virtual machine. However, these software components have design-
based drawbacks that work against that goal:

• The software components are large and very complex – this applies especially to full virtualization 
support. This implies that flaws, including security-relevant flaws, are likely to be hidden in the code 
base.

• The software components execute in a very privileged environment (the Linux kernel in Dom0 for 
Xen); some execute in the most privileged environment (the hypervisor for VMWare ESX) of the 
VMM – as such, any security-relevant flaw may provide an attack vector allowing the abuse of this 
high privilege.

The following assessment analyzes how the different VMM implementations handle these issues. This 
analysis includes a review of whether supporting separation mechanisms inherent in the design or 
implementation of each VMM mitigate the risks outlined above.
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5.1.3 KVM

KVM currently provides only one para-virtualized devices which is even implemented in QEMU22. As such, 
the QEMU mediates access to a limited number of resources and is, therefore, considered to provide a 
smaller likelihood of attack vectors to circumvent resource separation than Xen and VMWare due to the 
limited privileges granted to QEMU by the Linux host system. A potential security issue of QEMU cannot be 
used to stage unrestricted access attempts to devices known to the Linux host system. However, such 
potential security issues can still be used to stage access attempts to resources assigned to other virtual 
machines, because all virtual machines as well as the virtual machine management daemon of libvirt execute 
with the same user ID.

In addition to the assessment of the para-virtualized device drivers, the full virtualization support implemented 
with QEMU is important, as QEMU also controls resources that must not be shared with other virtual 
machines, such as disk devices. Concerning the implementation details relevant for this assessment, please 
see section 5.2.3, which covers the following topics:

• The virtual machine processes also hosting QEMU execute with normal, unprivileged user ID. The 
use of such an unprivileged user ID is very effective in ensuring that the virtual machine processes 
cannot take control of the Linux host system. This user ID cannot be used to circumvent the access 
control settings of the UNIX permission bits or ACLs, trace other processes with a different user ID or 
access and modify their memory.

• All virtual machine processes with QEMU support execute with the same user ID23. The use of the 
same user ID for all virtual machines results in the conclusion that all resources of all virtual 
machines must be accessible by this user ID. Therefore, in case of security flaws in QEMU, the fact 
that all resources are accessible by all QEMU instances does not support the separation of resources 
assigned to different virtual machines.

5.1.4 Xen

The Xen hypervisor implements device drivers that are used solely to allow the hypervisor's execution on its 
hardware. The hypervisor does not implement the para-virtualization interfaces, keeping the hypervisor's 
device drivers exclusively for its operation.

The para-virtualized backend device drivers are implemented in the Dom0 Linux kernel. This Linux kernel 
implements a number of these backend drivers and provides, therefore, a sizable number of interfaces to the 
virtual machines. As the Linux kernel in Dom0 has direct access to most of the hardware resources, such as 
disk devices or networking, these backend drivers are the line of defense for separating the resources 
assigned to the different virtual machines. This implies that a security-relevant flaw in a backend driver might 

22 Please note that for new developments of KVM, para-virtualized device backends are considered to be implemented 
in the host Linux kernel. The consideration of SELinux enforcements inside the kernel when sVirt is active as part of 
future KVM releases: As specified below, SELinux with an appropriate rule set is effective in supporting the 
separation of the resources handled by QEMU. The question is whether SELinux is also effective in kernel space. 
First, this assessment assumes that the SELinux hooks are executed by the information flow between the para-
virtualized support drivers of KVM and the physical device drivers implementing access to the real resources 
(please note that most of the SELinux hooks are in Linux kernel layers close to user space, well above the driver 
levels). SELinux would then also provide a hypervisor-inherent restriction on the information flow between 
resources and virtual machines supporting the separation of resources for the virtual machines. If a security-
relevant flaw were identified in the physical or para-virtualized drivers in the kernel, however, it is likely that the 
restrictions of SELinux could be circumvented more easily, as SELinux operates in the same privileged security 
domain as the drivers. On the other hand, security flaws in user space, even in processes with root privileges, 
cannot circumvent SELinux, as these flaws do not provide access to the kernel where SELinux operates. In 
conclusion, one must consider that any SELinux restrictions enforced for para-virtualized device drivers are not as 
effective as the same restrictions enforced for user space processes.

23 The sVirt support which is already available but not yet integrated with RHEL5.4 and the discussed KVM version 
provides additional separation. The same applies to the separation provided by cgroups concerning disk devices. 
With sVirt and the associated SELinux policy assign unique SELinux categories to each virtual machine. This also 
implies that access to resources assigned to a QEMU instance is inherently separated by the VMM. If QEMU contains 
a security-relevant flaw, sVirt provides an additional system-inherent separation mechanism that would prevent a 
possible abuse of the flaw to access resources of other virtual machines. Therefore, the SELinux restrictions 
considered to be effective for reducing the impact of the use of the same user ID for all virtual machines to support 
the separation of resources. Similarly, access restrictions to disk devices provided with cgroups add another layer 
of separation between virtual machines.
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have a higher likelihood of allowing a break in the separation of resources between virtual machines. The 
sHype or Flask support of the Xen hypervisor are not considered to provide a remedy, as this support 
controls access to the hypervisor interfaces and inter-domain communication channels. However, neither 
sHype nor Flask supports the separation enforced by the Linux kernel backend drivers. An additional 
consideration is important to the backend drivers: most of them are triggerable via the Xenbus inter-domain 
channel. This assessment did not further elaborate on the Xenbus protocol, but notes that there is one bus 
that connects all domains with Dom0. Such a design might have the potential to further weaken the 
separation enforcement of the backend drivers if attacks are developed for spoofing, replaying, sniffing, or 
others of Xenbus messages.

With respect to the full virtualization support component of QEMU, section 5.2.4 explains implementation 
details relevant for this assessment. The default configuration for the QEMU instances mediating access to 
resources is the execution of equally-privileged processes executing on the Linux kernel in Dom0. As such, 
the same concerns  previously described for KVM also apply to Xen:

• The QEMU processes execute with root privilege in Dom0. This implies that they have authority in 
the Dom0 operating system and can utilize all services a Linux kernel provides to processes with root 
privilege. If the QEMU implementation contains a security-relevant flaw, the likelihood is high that it 
can be used to trigger operations executing with root privileges in Dom0. This also implies that such 
flaws have a higher likelihood to interfere with the operation of other QEMU processes and the 
resources they control. This ultimately provides an attack vector that might be used to circumvent the 
separation of resources between virtual machines. To counter this threat, Xen provides a special 
configuration for QEMU: hosting each QEMU instance within a separate virtual machine, a Stubdom. 
As such, a breach of one QEMU instance is restricted to its virtual machine. An attacker might have 
the chance to abuse such an attack vector to access the para-virtualized devices exported by Dom0 
to the Stubdom. Such indirect attack of Dom0 is, however, considered to be much more complex 
than a direct attack of para-virtualized backend drivers.

• Similar to KVM, the QEMU processes execute with the same user ID in Dom0 in the default setup. 
Thus, all resources the different QEMU processes must have access to also share the same level of 
access. However, this issue is negligible compared to the issue of root authority of the QEMU 
processes discussed above.

5.1.5 VMWare ESX Server

The vmkernel hypervisor implements several device drivers that are accessible from virtual machines via 
para-virtualized driver interfaces. As the hypervisor and, therefore, these device drivers have direct control 
over the physical hardware, these drivers together with their para-virtualized driver interfaces must implement 
the capability to separate the resources assigned to the different virtual machines. Considering the VMI para-
virtualization interface description developed by VMWare, a number of para-virtualized drivers together with 
their physical device drivers are considered to be implemented in the hypervisor. Any security-relevant flaw in 
any of the para-virtualized device drivers might provide an attack vector to circumvent the separation 
capability enforced by this driver. Additional architectural support for ensuring the separation is not identified.

The assessment of the full virtualization support component provided with VMX cannot be completed. The 
following issues for which public documentation was not found would need to be assessed in order to 
complete the assessment:

• Which operations can be performed by a VMX on the hypervisor?

• Are there additional access control mechanisms enforced by the hypervisor that restrict access 
requests from one VMX to resources not assigned to that VMX instance?
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5.2 Guest VM subversion of trusted VMM software

5.2.1 Attack scenario

In order to ensure the proper separation of resources, the entire functionality of the hypervisor must be 
trusted. Any software component part of the hypervisor has full hardware privileges and can access any 
resource of the system, including physical devices, data stored on devices, etc.

In addition to the hypervisor, chapter 4 lists the software that is considered to be trusted and  is accessible 
from virtual machine guest software.

If any of the mentioned trusted software components can be altered by the guest software running within a 
virtual machine, the software is considered to be subverted, and trust in this software component, as well as 
trust in the separation capability of the VMM, is undermined.

In addition to the modification of trusted software, an attacker might want to add a completely new software 
component. If the guest software has the ability to place another layer of software between the hypervisor 
and the hardware, the results of the operation of the hypervisor cannot  be fully trusted, as the additional 
software layer can emulate a different environment and behavior of the underlying hardware. Effectively, this 
additional software layer adds another untrusted VMM layer.

These concerns cover rootkits or virus-like exploits of the VMM software, as well as the subversion of the 
boot process of the VMM.

5.2.2 General discussion of scenario

In order to understand the abilities of the analyzed VMMs to protect against this attack, the goals of viruses 
and rootkits must be analyzed. Rootkits and viruses try to evade the security policies of the exploited system 
to grant the owner of the malware access to system resources, user resources, system data, or user data 
they would not otherwise have access to. For this discussion, it is irrelevant whether rootkits and viruses only 
exploit the system once and then somehow remove themselves, or whether they are permanent critters that 
exploit the system over a duration of time.

Viruses and rootkits need privileges to access the security domain of the software they want to subvert, they 
need privileges to access a security domain that controls other security domains, or they need to have access 
to the boot procedure. The security domains relevant for VMMs are the resources maintained for and by the 
hypervisor and those of the separate virtual machines. Therefore, the following general attacks are possible:

• Access of security domains: Malware needs to access the resources of the hypervisor to subvert this 
hypervisor. Also, malware needs to access the software providing full virtualization support executing 
in a privileged security domain in order to subvert it.

• Access of security domains controlling other domains: Malware might modify the software providing 
full virtualization support executing in a privileged environment by first exploiting flaws in the 
hypervisor, because the hypervisor also controls the resources of the security domain of the 
privileged virtual machine executing this emulating layer.

• Interfering with boot process: If malware can interfere with the boot process by manipulating the boot 
loader, the boot loader's configuration, or the first stages of the booted VMM, it can also subvert any 
operation of the VMM. The reason is that the hardware starts the boot sequence by granting the 
booted software full privilege. This implies that the hardware initially allows every operation 
performed by the software. During a normal boot process, the booted VMM must program the 
hardware to enforce restrictions on subsequent software. When malware is able to access this boot 
sequence, it has the same hardware privileges as it would have when subverting the hypervisor at 
VMM runtime.

Based on the description above, it is clear that the hypervisor is the most critical software component of a 
VMM, as it controls and has access to all resources of the hardware, including its own and those of the virtual 
machines managed by the hypervisor. This implies that any interfaces exported to virtual machines executing 
untrusted code and any functionality accessible by those virtual machines are potential attack vectors. The 
smaller the functionality (and its complexity) and the smaller the number of interfaces, the less attack vectors 
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exist. The less attack vectors exist, the less likely an implementation can be attacked. Translated to the 
functionality of common hypervisors, the following statements can be considered: Device drivers and other 
resource access-mediating logic implemented in the hypervisor that are directly accessible by exporting 
interfaces usable by para-virtualized device drivers to virtual machines provide direct attack vectors. 
Attackers can perform any operation on these directly-accessible interfaces (please note also that virtual 
memory management can be considered as a form of device driver here and, therefore, para-virtual 
interfaces to the virtual memory management are covered by this statement about direct interfaces). Device 
drivers and other resource access-mediating logic implemented in the hypervisor that are accessed indirectly 
via the full virtualization support usually implemented in a privileged virtual machine or a similar concept 
provide attack vectors where the attacker can only exercise operations limited by the full virtualization 
software components – one notable exception is KVM which implements the full virtualization support as an 
unprivileged software component with respect to the host system. To conclude, the following must be 
considered: the smaller the number of device drivers (methods to access resources mediated by the 
hypervisor) the hypervisor implements, the less attack vectors are provided. And the less attack vectors are 
available, the smaller the probability of exploiting the hypervisor.

In addition to the problems to be handled by the hypervisor, the full virtualization support software needs to 
be examined. As analyzed in chapter 4, all VMM implementations relevant for our discussion implement the 
full virtualization support software (QEMU for KVM and Xen, VMX for VMWare ESX Server) as part of the 
privileged software stack. The privilege arises from two aspects:

• The full virtualization support software has privileged interfaces to the hypervisor and, therefore, has 
the potential to interfere with the security functionality of the hypervisor – this issue was previously 
described in the discussion about subverting the hypervisor via an indirect attack vector.

• Separately from using the full virtualization support software to access the hypervisor, this support 
software may also be used to access other instances of the full virtualization support software 
maintained for other virtual machines. When the different full virtualization support software instances 
execute with the same privileges for all virtual machines, security flaws in these software components 
provide attack vectors to subvert the operation of the support software of other virtual machines. This 
implies that viruses or rootkits might not penetrate the hypervisor, but might gain equal access to 
other virtual machines' resources by attacking the full virtualization support software, as separation 
between them is not fully enforced.

5.2.3 KVM

Considering the concerns regarding the hypervisor, the architecture of KVM allows the following conclusions:

• Development of para-virtualization device driver support is ongoing for KVM. Currently only one para-
virtualized device backend is directly accessible which is even implemented in QEMU and therefore 
covered by process isolation mechanisms of the host Linux kernel. As such, the number of para-
virtualized devices and the number of interfaces provided by the hypervisor of the Linux kernel is 
limited when compared to Xen or VMWare ESX. Also, the para-virtualized backend device is not 
implemented in the privileged hypervisor as it is common practice for other hypervisor 
implementations, adding additional assurance for maintaining separation of the virtual machines.

• Indirect interfaces are provided by the Linux kernel, which acts as a hypervisor via the QEMU 
instances. The processes providing the virtual machines that also host the QEMU full virtualization 
support software all execute unprivileged user IDs on the Linux kernel of the host system. This 
implies that QEMU only has very limited means to interact with the Linux kernel of the host system, 
which restricts the capabilities of QEMU to cause unwanted behavior on the host system. Therefore, 
the hypervisor of the Linux kernel is considered to be hardly penetrable by the QEMU logic.

As the Linux processes hosting the virtual machines, including the QEMU component, all execute with the 
same user ID24, the QEMU processes can interfere with each other by the following means:

24 Future versions of KVM will provide secure configuration options to contain the issues concerning the separation of 
virtual machines from each other due to the use of the same user ID for each of it: sVirt and cgroups. sVirt employs 
the SELinux support of the Linux kernel and configures an SELinux label used for all virtual machines. When setting 
up virtual machines covered by the SELinux label, the above identified attack vectors resting on the issue of the 
same user IDs of the virtual machines are mitigated. In addition, cgroups further limits access to disk devices for 
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• The Linux kernel provides facilities to processes executing with the same user ID to access other 
process' memory with the potential even to alter memory using the ptrace system call.

• The resources assigned to a virtual machine include disk space provided via physical disk or partition 
device files or via disk files stored on the host system. These disk devices are read and write-able by 
every virtual machine process, because the virtual machines execute with the same user ID and 
group ID in the Linux host system. This concern applies to all resources that are accessible as file 
system objects, such as dedicated devices accessible through device files.

If QEMU contains a security-relevant flaw, it may serve as an attack vector for viruses and rootkits to utilize 
the discussed interfaces and interfere with the operation and the resources of other virtual machines, but not 
with the host system.

Finally, the use of an unprivileged user ID does not allow any interference with the boot process of the host 
system. Even if there would be a QEMU security-relevant flaw, the unprivileged user ID of the virtual machine 
process with the QEMU instance does not allow any administration on the host boot process.

5.2.4 Xen

The general security concerns applicable to the Xen hypervisor can be characterized as follows:

• The number of hypercalls provided to virtual machines is sizable. A subset of these hypercalls is 
provided to allow access to the para-virtualized device driver support provided with Xen.  However, 
with the exception of virtual memory management, the hypervisor does not mediate access to 
devices, but only allows the establishment of inter-virtual machine communication to the para-
virtualized backend drivers hosted by the Linux kernel in Dom0.

• The other subset of these hypercalls is used to manage aspects of the virtual machines from Dom0. 
As the QEMU processes instantiated in Dom0 for each virtual machine have root privilege, they may 
use every interface accessible from the Linux kernel driving the software in Dom0. However, the 
QEMU instances have no direct access to the hypercalls. Nevertheless, the Linux kernel provides 
partially-privileged interfaces in /proc/xen (such as the privcmd file) that are used to manage aspects 
of the hypervisor, including SELinux policy loading and others. This implies that QEMU has indirect 
access to the hypervisor via the interfaces exported by the Linux kernel in Dom0.

The Xen QEMU instances execute as root on the Linux kernel in Dom0. As such, the same concerns exist 
with respect to the separation of the different QEMU instances from each other to ensure that they cannot 
interfere with each other. The same aspects apply to Xen, as well.

Also due to the fact that the QEMU instances execute with root privileges, potential security problems in 
QEMU may provide an attack vector to modify the boot process of the Xen hypervisor and the Dom0 
environment. Please note that the configuration file of the boot loader as well as every aspect of the boot 
procedure including the booting of the Xen hypervisor can be modified using the root capability in Dom0 
which grants write access to the boot hard disk partition.

Xen allows the use of access control modules, with two such modules currently provided: Flask (equivalent to 
the SELinux logic found in the Linux kernel) and sHype. However, rule sets need to be defined for these 
mechanisms to partially remedy the issues outlined above. As no default rule sets are defined, this 
assessment considers the availability of the framework. Due to the missing rule set, however, the “no 
enforcement” logic can be applied, which means that the two existing access control modules cannot be 
considered for this assessment.

An additional remedy that is effective for separating the QEMU instances is the use of Stubdoms. Effectively, 
each QEMU instance is placed together with a mini kernel into a separate DomU and then translates the I/O 
requests from an HVM virtual machine into para-virtualized I/O requests handled by the Linux kernel in 
Dom0. Therefore, the entire issue around QEMU executing as root on the Linux kernel in Dom0 is solved if 
such a Stubdom is instantiated for every general-purpose DomU. Such a configuration also ensures that the 
QEMU instances cannot interfere with each other.

virtual machines to only their assigned disks.
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5.2.5 VMWare ESX Server

The general security concerns applicable to the vmkernel hypervisor of the VMWare ESX server can be 
characterized as follows:

• The hypervisor implements a number of hypercalls if it follows the VMI specification defined by 
VMWare. As such, it offers a number of interfaces to device drivers implemented in the hypervisor, 
mainly for memory management, storage, and networking. These hypercalls provide a direct 
interface to the hypervisor device drivers.

• An additional set of interfaces, the “user world” interfaces that implement a subset of POSIX, are 
offered to support software running outside the hypervisor and do not belong to the virtual machines. 
One of these support software components is VMX, the full virtualization support software 
instantiated for each virtual machine. Therefore, VMX allows virtual machines to indirectly use these 
user world interfaces of the hypervisor, as well. As this set of user world interfaces is also used by 
administrative services to configure and manage virtual machines, it might be possible that the VMX 
instances technically also have access to these administrative hypervisor interfaces. It is  unclear as 
yet whether this user world interface is covered by a privilege mechanism that restricts the number of 
available interfaces to VMX, preventing VMX from accessing administrative interfaces.

Concerning the interference of the VMX instances with each other, no assessment can be made, as the 
following information is not available:

• Do the VMX instances execute with the same level of privilege?

• What kind of user world interfaces are offered by the hypervisor that could be used by one VMX 
instance to access resources of another instance?

The assessment of the subversion of the boot procedure is also impeded by the lack of information around 
the boot process of ESX's vmkernel. The following questions would need to be clarified to conclude the 
assessment:

• Is the boot partition technically writable by any VMX instance?

• Is there a user world interface that allows triggering/changing the boot loader configuration and the 
boot loader code?

• Is the disk partition holding the boot loader code technically writable by a VMX instance?

5.3 Guest VM causes Denial-of-Service for other VMs

5.3.1 Attack scenario

In addition to the proper separation of virtual machine resources, the VMM implementation also has to ensure 
that resources shared between the virtual machines are shared such that one virtual machine cannot fully 
utilize the resource.

For example, the physical CPUs are assigned to a virtual machine for a specified period of time and then 
reallocated to other virtual machines by the VMM. The VMM now has to ensure that a virtual machine does 
not have the potential to utilize more CPUs than configured to avoid resource starvation, also called a denial-
of-service, to other virtual machines. Such a denial-of-service attack is considered to take place if the 
execution of a virtual machine is degraded to such an extent that normal operation of software within that 
virtual machine is nearly impossible.

Please note that only denial-of-service attempts impacting other virtual machines are considered in this 
assessment. If a virtual machine can cause a denial-of-service of a part of the VMM without other virtual 
machines being affected by that denial-of-service, it is considered a non-issue for this assessment. Also, 
denial-of-service of a resource that is exclusively available to the virtual machine mounting the denial-of-
service is also considered to be irrelevant to this discussion.
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5.3.2 General discussion of scenario

Denial-of-service attacks can only be performed targeting resources that other virtual machines use (either as 
shared or exclusive resources). As a number of resources are shared between virtual machines and the VMM 
(such as CPU time, PCI host bridges, and other physical bus systems when accessing physical devices), the 
resource utilization of such shared resources by the VMM when it is acting on behalf of a virtual machine 
request is a very important aspect. If a virtual machine invokes a service from, say, the hypervisor by making 
a hypercall, the hypervisor CPU execution time for performing the call and returning to the virtual machine 
must effectively be added to the utilization of the CPU by the calling virtual machine. If such an approach 
would not be taken, a virtual machine has the potential to fully or partially exhaust the shared resource (the 
CPU execution time in our case) by repetitively calling the discussed hypervisor service function.

In addition to the CPU, the second major shared resource is memory. As long as portions of memory are 
statically assigned to virtual machines and these exclusive assignments are not altered for the duration of the 
execution time of a virtual machine, denial-of-service attacks against memory are less of a problem. 
However, if active management of memory by the VMM is performed, threats arising from denial-of-service 
attacks are much higher. General denial-of-service attacks include the following types:

• Attacks against over-commitment of memory imply that the VMM is able to assign more memory to 
virtual machines than is physically available. Different techniques for over-commitment are available. 
Denial-of-service attacks can be mounted against two aspects: 

◦ Using a much slower storage space as an extension of physical memory (swap space on hard 
disk, for example), forcing the VMM to constantly page memory to and from that extension space, 
has a high chance to slow the VMM operation down, impacting other virtual machines.

◦ Over-committing memory: the VMM must be able to handle situations when it is out of memory. It 
is especially important that the components of VMM are not affected by the out-of-memory 
handling logic.

In addition to CPU and memory, other resources also are subject to denial-of-service-considerations. The 
assessment of the individual VMM implementations will address these aspects if remedy support is 
implemented.

Please note that the most effective remedy against a denial-of-service attack is to minimize shared resources 
as much as possible. If shared resources are needed, the level of sharing should be minimal in order to 
reduce the effect of denial-of-service.

5.3.3 KVM

The hypervisor for KVM is the Linux kernel. As the virtual machines are handled like normal applications by 
the Linux kernel, several supporting mechanisms against denial-of-service attacks can be utilized:

• The direct CPU utilization depends on how the Linux kernel schedules the virtual machine process 
compared to other processes. Scheduling can be influenced by setting the nice level for a virtual 
machine process. This changes how often the Linux kernel scheduler assigns CPU time to the virtual 
machine. Using the nice level, the effects of a denial-of-service attack by over-utilization of the CPU 
can be reduced. The Linux kernel even allows the binding of virtual machine processes to specific 
CPUs, allowing configurations where important virtual machines that might be more trusted have 
access to different physical CPUs than virtual machines that are not fully trusted. This implies that 
denial-of-service attacks by untrusted virtual machines against trusted virtual machines cannot be 
effectively executed with respect to CPU time.25

• The Linux host system for KVM usually configures a Swap space to allow the Linux kernel to assign 
more memory to processes, including virtual machine processes, than is physically available. 
Processes can cause denial-of-service situations when they can trigger the kernel to start massively 
swapping memory to/from the Swap space. If such attacks are considered, the Swap space may be 
either reduced in size or eliminated completely, which essentially reduces the Linux kernel's ability to 
over-commit memory. Please note that the virtual machines must be configured with the maximum 

25 Using cgroups in RHEL6, virtual machines can also be restricted to CPU limits which supports the prevention of 
denial of service.
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memory available. If the maximum memory settings of virtual machines are less than the physical 
memory available on the host system, swapping cannot be directly triggered by virtual machines. 
However, issues in QEMU may trigger additional memory consumption of the QEMU part of the 
virtual machines, circumventing the maximum memory setting for a virtual machine.

• In case over-commitment of memory is used, what happens when the host system runs out of 
memory? The Linux kernel implements a mechanism called OOM-Killer which provides an algorithm 
for the kernel to identify a likely process to kill if the host system is out of memory. As OOM-Killer is 
tuned to handle general purpose applications, its logic might not be fully suitable if Linux is solely 
used as a hypervisor. Still, having an OOM-Killer supports the hypervisor in avoiding denial-of-service 
attacks against memory.

• The Linux kernel allows the configuration of resource quotas or the use of traffic shapers to limit the 
use of resources including network bandwidths. These mechanism support the host to limit the 
impact of denial-of-service attacks against covered resources.

Please note that all the relevant settings offered by the VMM must be appropriately tuned to be effective, 
depending on the actual attack scenario considered for denial-of-service attacks. 

5.3.4 Xen

The allocation of CPUs to virtual machines is controlled by the hypervisor based on how many CPUs are 
configuration for a virtual machine. This implies that the hypervisor must handle denial-of-service attacks 
against the CPU. Xen does not provide any mechanisms to influence the scheduling of virtual machines on 
physical CPUs that would support the prevention of denial-of-service attacks.

To limit the effects of denial-of-service attacks against CPU time, the number of virtual CPUs allocated to a 
virtual machine can be reduced. The hypervisor considers the number of configured virtual CPUs when 
scheduling virtual machines. The hypervisor even allows the binding of virtual machines to specific CPUs, 
allowing configurations where important virtual machines that might be more trusted have access to different 
physical CPUs than virtual machines that are not fully trusted. This implies that denial-of-service attacks of 
untrusted virtual machines against trusted virtual machines cannot be effectively executed with respect to 
CPU time.

Memory over-commitment can be configured for virtual machines. Xen implements the over-commitment by a 
ballooning approach without swapping. As such, the VMM does not maintain a Swap space, but the operating 
system within virtual machines can dynamically increase or decrease their virtual machine's memory 
allocation. The hypervisor ensures that every virtual machine is provided with a configurable minimum 
memory amount. This implies that if an out of memory situation occurs, every virtual machine has still the 
minimum memory available. This effectively stops the effects of denial-of-service attacks if the administrator 
sets the minimum memory for virtual machines at a level that ensures the proper operation of the guest 
software when restricted to this minimum amount of memory.

5.3.5 VMWare ESX Server

The shared resource of CPU time can be protected against denial-of-service attacks by specifying a minimum 
and maximum percentage value of CPU time available to a certain virtual machine. The ESX server 
considers these values when scheduling virtual machines on the physical CPUs, causing denial-of-service 
attacks from one virtual machine against another virtual machine to be ineffective with respect to CPU time.

Similarly to the other VMM implementations, the ESX server allows memory over-commitment. This implies 
that the memory allowed to be used by all virtual memory is larger than the physically available memory. 
However, when all virtual machines are started, the initial memory consumption is lower than the physically 
available memory. The ESX server can modify the virtual machine's memory allocation during runtime. An 
appropriate mechanism to avoid out-of-memory situations is assumed to be in place. If the administrator 
wants to be on the safe side, no over-commitment of memory should be configured.

The network bandwidth controlled by the ESX server and granted to virtual machines can also be configured 
and limited. Therefore, denial-of-service attacks using the network against virtual machines is of limited effect, 
at least when the attack source is one of the virtual machines operated by the ESX server.
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The configuration of limits for shared resources and the assignment of such limits to virtual machines is 
considered to be average compared to other VMM implementations.

5.4 Usage of VMM for sandboxing

5.4.1 Usage scenario

The previous scenarios all examined possible abuse of either services or the architecture of the VMM 
implementation. Starting with this scenario, specific usages are analyzed, along with how the VMM 
implementations cover the respective usage requirements.

The first usage scenario covers the application of VMMs for sandboxing. Sandboxing is considered when the 
host or one virtual machine is used for regular day-to-day work. It is irrelevant whether a regular server logic 
is implemented in the one virtual machine or whether the VMM implementation is used on an end-user 
system. In general, only one operating system is hosted on the entire physical machine.

However, there are times when the user or administrator of the physical machine wants to start a virtual 
machine as a test environment, for example during development of new software or when testing new 
configurations or deployment scenarios of software. Also, virtual machines may be used to execute software 
that cannot run natively on the standard operating system; for example, the standard operating system is 
Linux, but the user/administrator wants to run an application that can only be executed on Windows.

5.4.2 General discussion of scenario

When using a VMM for sandboxing, the user generally wants to use the hardware with one operating system 
only and use the VMM environment only sporadically.

As such, this assessment validates whether a VMM implementation can provide one environment that 
behaves as if were operating on native hardware. This implies that access to all physical resources is 
possible and that all properties of the hardware are usable from this main environment. In addition, the VMM 
implementation must allow the starting of virtual machines without interrupting the regular operation of the 
main environment.

5.4.3 KVM

The KVM virtual machine monitor rests on the operation of a Linux host operating system. As virtual 
machines execute concurrently with normal processes and the Linux kernel support of normal processes is 
unaltered, the host system provides a normal Linux environment. This environment allows the execution of 
normal Linux applications as if KVM support were not available. Virtual machines are instantiated like normal 
processes and, therefore, starting new virtual machines does not interfere with the general operation of other 
processes.

The Linux kernel of the host system has full hardware access – there is no additional software layer between 
the underlying platform and the kernel. As such, the Linux kernel can put all its drivers to use; as a result, the 
Linux host system behaves like any other Linux system, whether or not virtual machines are running. With 
this design approach, all desired desktop and laptop functionality can be used, including power management, 
suspend/resume, hibernation, direct rendering support for graphics hardware (i.e., 3D-support for graphics 
software), and others.

5.4.4 Xen

The general-purpose operating environment that allows most hardware access is Dom0. If Dom0 is used as 
the general work environment when using the VMM system for sandboxing, other virtual machines can be 
spawned without interrupting the operations in Dom0.
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Please note that the Linux kernel in Dom0 has direct access to a subset of the underlying hardware only. The 
hypervisor controls the rest of the hardware. This means that direct access to this hardware is not allowed for 
the Dom0 Linux kernel and it cannot employ its drivers and support logic when using this hardware.

As the hypervisor is developed solely for the purpose of acting as a hypervisor, support for special hardware 
mechanisms is limited. This means that Xen does not provide support for mechanisms that are generally 
assumed to be available for desktop or laptop systems. Such missing support includes power management, 
suspend/resume, hibernation and other mechanisms that build around the CPU. 

This means that Xen is somewhat less suited as a sandbox system if full support of the underlying hardware 
is important.

5.4.5 VMWare ESX Server

With respect to the support of all aspects of the underlying hardware, the architecture of VMWare ESX server 
is even more restricted than for Xen. As the ESX server does not maintain a privileged virtual machine 
environment with access to most of the hardware, all hardware access ultimately is mediated through the 
vmkernel hypervisor. Considering the number of devices supported by the ESX server hypervisor, only a 
small subset of hardware available for x86 architectures is supported.

As such, an operating system must execute in a normal virtual machine and is, therefore, limited to the 
hardware access allowed for such a virtual machine.

5.5 Guest VMs belong to different enterprise security 
domains

5.5.1 Usage scenario

Another usage scenario applied to this analysis is the handling and protection of groups of virtual machines 
based on their assignments to security domains. A security domain in enterprise networks is a group of 
services, information and/or resources that are considered to require an equivalent level of trust when 
accessed. 

For example, the database for a web application is considered to be in a separate security domain than the 
web application itself. The web application is accessible from the Internet, while  the database is well- 
protected from the Internet, but accessible by the web application. Different levels of trust are applied to the 
different services and data. Another example would be hosts that provide services of a DMZ vs. other hosts 
that provide services for the accounting department of an enterprise.

This user scenario analyzes how the different VMM implementations can handle groups of virtual machines 
that belong to different security domains. This implies that resources belonging to the different groups of 
virtual machines can be categorized and that additional separation of the resources of the virtual machines is 
performed based on these categorizations. 

5.5.2 General discussion of scenario

When considering the use of VMM for hosting virtual machines belonging to different enterprise security 
domains, it is important that the VMM ensure several aspects:

• The classification of enterprise security domains implies that general categories of data and functions 
are to be considered when administering the enterprise network. The different categories of data and 
functions must be differently protected, different levels of network protection might be considered to 
be necessary, and different backup strategies might be important. As such, a VMM would support 
different security domains if it has the capability to enforce an access control policy based on the 
labeling of data and resources. These labels shall reflect the category of the respective enterprise 
security domain. In essence, such mandatory access control restrictions support the prevention of 
covert storage channels between the different enterprise security domains.
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• In addition to a mandatory access control mechanism for controlling access to resources, the 
problem of controlling covered channels arise. Separation of different enterprise security domains 
also implies that no information shall flow from one domain to the other. Resource sharing systems, 
including VMMs, always provide covered timing channels with the shared resources. Currently, there 
is no practical solution to avoid timing channels in such systems. Therefore, the issue of timing 
channels is disregarded for this analysis.

The hardware hosting the VMM and all resources accessible by the VMM must be protected based on the 
requirements defined for the software in a virtual machine belonging to the most critical security domain. For 
example, a security domain for public servers and internal databases exists, where the internal database 
servers must be hosted in a special computer lab. If a VMM now hosts a virtual machine that belongs to the 
public server category, as well as another virtual machine belonging to the protected database server 
category, the hardware hosting the VMM must be treated according to the stricter physical requirements 
defined for the database server category.

5.5.3 KVM

For KVM, no mandatory access control enforcement could be identified to support the definition of enterprise 
security domains and assign resources as well as virtual machines to these domains26.

5.5.4 Xen

The Xen hypervisor allows the use of an access control module that allows the intercept of hypervisors, as 
well as inter-domain communication. Two different access control modules are provided: sHype and Flask. 
Both modules must be employed with a policy similar to SELinux that governs access control enforcement. 
As indicated earlier, no pre-defined rule set could have been identified, but an administrator may specify his 
own rule set.

However, mandatory separation enforcement with respect to virtual machines and their resources is not 
considered to be complete, as the resource access mediated in Dom0 (either via the Linux kernel para-
virtualized drivers or via the QEMU processes) is not subject to the mandatory access control enforcement 
provided by sHype or Flask.

Considering the ACM hooks defined by include/xsm/acm/acm_hooks.h, no hint as to the coverage of the 
Xenbus inter-domain communication channel by ACM and, thus, sHype or Flask, is evident. As such, the 
Xenbus and all communication flowing through it provides another communication channel that is not subject 
to a mandatory access control policy.

5.5.5 VMWare ESX Server

For VMWare ESX Server, no mandatory access control enforcement could be identified.

6 General Considerations
The assessment of security aspects could be enhanced by considering additional factors beyond the 
technical aspects of VMM design and architecture discussed in this paper. For example, additional in-depth 
analysis might be performed covering implementation around generally complex areas, including:

• DMA handling

• Real mode handling for the boot process (please note that during the boot process, every operating 
system assumes the processor is in real mode)

Coverage of such details is out of scope of this assessment, as it would have greatly enlarged the discussion.

26 The Linux kernel offers SELinux functionality, which can be used to enforce a mandatory access control rule set. A 
rule set is defined for KVM, and the management interface already applies this rule set by assigning an SELinux 
label to the virtual machine resources and the virtual machine process. The discussion of sVirt and how it supports 
the mandatory separation of virtual machines and their resources applies to this scenario as well.
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In addition, the following non-technical aspects may be considered when determining whether a VMM is 
suitable for an organization's needs:

• Open source vs. closed source: The reader and user of VMMs should be aware of the two 
fundamentally different development approaches and determine which approach best supports the 
needs of the deployment environment.

• Available hardening procedures: Hardening procedures available for a specific VMM might support 
the secure operation of this VMM.

• Administration interfaces: Well-designed and helpful administration interfaces that do not hide the 
functionality of VMMs are very important. GUIs tend to obfuscate the complex nature of a product – 
thus, well-implemented GUIs that allow the administrator to understand the implications of his actions 
are important.
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